首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2022年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Al-Madinah City is located in the western part of Saudi Arabia on the Arabian Shield. The area underwent several tectonic events that developed its structural and geomorphic features, such as the Infracambrian Najd strike-slip faults, development of the Cenozoic basaltic flows of Northern Harrat Rahat, and Cenozoic N–S and E–W transtensional faults, related to the Red Sea rifting. These successive events formed a deltaic-shaped basin of Al-Madinah. The Al-Madinah basin is part of a 400?×?150-km2 Wadi Qanah–Al-Hamd watershed, which exhibits mainly parallel drainage pattern. Sub-basins, within the main basin, exhibit trellised and radial drainage patterns. The trellised drainage pattern reflects control of the Cenozoic faults, whereas the radial drainage pattern reflects volcanic-related system. Rotation of the Arabian Plate after several extensional events that lead to the opening of the Red Sea influenced the drainage flow to be going from east to west. This geological history that include eruption, normal faulting, and erosion prior to and during the Red Sea rifting formed relief inversion geomorphology of Tertiary basalts that cap Precambrian rocks of the Ayr and Jammah Mountains in western Al-Madinah. The groundwater in the central area is part of the northern Harrat Rahat basaltic aquifer in which the groundwater level rises up in the central area due to the blocking of groundwater flow by constructions below the central area and due to reduced groundwater abstraction. Building a dam 60 km northwest of Al-Madinah would preserve more surface water than the Al-Bayda dam, in which all main valleys join in at the suggested location.  相似文献   
2.
Maatouk  E.  Samrani  A. El  Sawan  R.  Salameh  R. Bou Ghosn  Kazpard  V.  Matar  Z. 《Aquatic Geochemistry》2022,28(2):111-133

This work focuses on the characterization of a typical coastal karst watershed by addressing its physico-chemical parameters. The concentrations of the main ions clearly indicate the dominance of Ca2+ and HCO3? with a carbonate weathering rate equivalent to 230t/Km2/year; that is a typical weathering of karst watersheds. The spatio-temporal variability of dissolved organic matter (DOM) is also assessed in the watershed. Many samples were collected under different hydrological conditions from three representative sites. The evolution of OM composition along an urbanization gradient from upstream to downstream Kadisha watershed reveals the very strong impact of urban discharges on the receiving waters. Substantial differences in DOC results are highlighted in relation to the urban or natural origin of the DOM. Upstream OM flux is quantified and compared to downstream OM flux showing that, during the low flow period, the downstream flux is 29 times higher than the upstream. Also, a large fraction of non-humic substances, including hydrophilic organic matter HPI, is detected in the downstream section impacted by urban discharges. The higher values of SUVA noticed for DOM at upstream compared to downstream, reflects the low aromaticity and non-humic character of DOM in downstream. These outcomes show the impact of the Tripoli urban discharges on the quality and quantity of OM in the receiving waters downstream of the Kadisha catchment. This is typical at low water period when the dilution factor of urban discharges in the receiving waters is the least.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号