首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82195篇
  免费   1545篇
  国内免费   622篇
测绘学   1860篇
大气科学   5599篇
地球物理   16629篇
地质学   29197篇
海洋学   7231篇
天文学   18532篇
综合类   212篇
自然地理   5102篇
  2021年   824篇
  2020年   964篇
  2019年   1041篇
  2018年   1976篇
  2017年   1904篇
  2016年   2221篇
  2015年   1269篇
  2014年   2184篇
  2013年   4095篇
  2012年   2463篇
  2011年   3330篇
  2010年   2999篇
  2009年   3924篇
  2008年   3389篇
  2007年   3459篇
  2006年   3196篇
  2005年   2349篇
  2004年   2347篇
  2003年   2336篇
  2002年   2124篇
  2001年   1877篇
  2000年   1784篇
  1999年   1515篇
  1998年   1554篇
  1997年   1490篇
  1996年   1284篇
  1995年   1296篇
  1994年   1134篇
  1993年   1005篇
  1992年   934篇
  1991年   919篇
  1990年   1032篇
  1989年   887篇
  1988年   839篇
  1987年   1004篇
  1986年   918篇
  1985年   1133篇
  1984年   1261篇
  1983年   1236篇
  1982年   1091篇
  1981年   1043篇
  1980年   915篇
  1979年   866篇
  1978年   863篇
  1977年   832篇
  1976年   763篇
  1975年   776篇
  1974年   737篇
  1973年   802篇
  1972年   492篇
排序方式: 共有10000条查询结果,搜索用时 359 毫秒
1.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
2.
The 33 086 ha mixed land use Fall Creek watershed in upstate New York is part of the Great Lakes drainage system. Results from more than 3500 water samples are available in a data set that compiles flow data and measurements of various water quality analytes collected between 1972 and 1995 in all seasons and under all flow regimes in Fall Creek and its tributaries. Data is freely accessible at https://ecommons.cornell.edu/handle/1813/8148 and includes measurements of suspended solids, pH, alkalinity, calcium, magnesium, potassium, sodium, chloride, nitrate nitrogen (NO3-N), sulphate sulphur (SO4-S), phosphorus (P) fractions molybdate reactive P (MRP) and total dissolved P (TDP), percent P in sediment, and ammonium nitrogen (NH4-N). Methods, sub-watershed areas, and coordinates for sampling sites are also included. The work represented in this data set has made important scientific contributions to understanding of hydrological and biogeochemical processes that influence loading in mixed use watersheds and that have an impact on algal productivity in receiving water bodies. In addition, the work has been foundational for important regulatory and management decisions in the region.  相似文献   
3.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
4.
Who collects the Devonian crinoids of south-west England? Since the nineteenth century, almost nobody. Few palaeontologists pursue these fossils, undoubtedly handsome in life, but indifferently preserved. Herein, we make a survey of four of the most important crinoid sites, all of which have the potential to produce new specimens.  相似文献   
5.
To date, passive flux meters have predominantly been applied in temperate environments for tracking the movement of contaminants in groundwater. This study applies these instruments to reduce uncertainty in (typically instantaneous) flux measurements made in a low-gradient, wetland dominated, discontinuous permafrost environment. This method supports improved estimation of unsaturated and over-winter subsurface flows which are very difficult to quantify using hydraulic gradient-based approaches. Improved subsurface flow estimates can play a key role in understanding the water budget of this landscape.  相似文献   
6.
7.
The impact of turbulent flow on plane strain fluid‐driven crack propagation is an important but still poorly understood consideration in hydraulic fracture modeling. The changes that hydraulic fracturing has experienced over the past decade, especially in the area of fracturing fluids, have played a major role in the transition of the typical fluid regime from laminar to turbulent flow. Motivated by the increasing preponderance of high‐rate, water‐driven hydraulic fractures with high Reynolds number, we present a semianalytical solution for the propagation of a plane strain hydraulic fracture driven by a turbulent fluid in an impermeable formation. The formulation uses a power law relationship between the Darcy‐Weisbach friction factor and the scale of the fracture roughness, where one specific manifestation of this generalized friction factor is the classical Gauckler‐Manning‐Strickler approximation for turbulent flow in a rough‐walled channel. Conservation of mass, elasticity, and crack propagation are also solved simultaneously. We obtain a semianalytical solution using an orthogonal polynomial series. An approximate closed‐form solution is enabled by a choice of orthogonal polynomials embedding the near‐tip asymptotic behavior and thus giving very rapid convergence; a precise solution is obtained with 2 terms of the series. By comparison with numerical simulations, we show that the transition region between the laminar and turbulent regimes can be relatively small so that full solutions can often be well approximated by either a fully laminar or fully turbulent solution.  相似文献   
8.
This study evaluated the spatial variability of streambed vertical hydraulic conductivity (Kv) in different stream morphologies in the Frenchman Creek Watershed, Western Nebraska, using different variogram models. Streambed Kv values were determined in situ using permeameter tests at 10 sites in Frenchman, Stinking Water and Spring Creeks during the dry season at baseflow conditions. Measurements were taken both in straight and meandering stream channels during a 5 day period at similar flow conditions. Each test site comprised of at least three transects and each transect comprised of at least three Kv measurements. Linear, Gaussian, exponential and spherical variogram models were used with Kriging gridding method for the 10 sites. As a goodness-of-fit statistic for the variogram models, cross-validation results showed differences in the median absolute deviation and the standard deviation of the cross-validation residuals. Results show that using the geometric means of the 10 sites for gridding performs better than using either all the Kv values from the 93 permeameter tests or 10 Kv values from the middle transects and centre permeameters. Incorporating both the spatial variability and the uncertainty involved in the measurement at a reach segment can yield more accurate grid results that can be useful in calibrating Kv at watershed or sub-watershed scales in distributed hydrological models.  相似文献   
9.
C.B Olkin  L.H Wasserman  O.G Franz 《Icarus》2003,164(1):254-259
The mass ratio of Charon to Pluto is a basic parameter describing the binary system and is necessary for determining the individual masses and densities of these two bodies. Previous measurements of the mass ratio have been made, but the solutions differ significantly (Null et al., 1993; Young et al., 1994; Null and Owen, 1996; Foust et al., 1997; Tholen and Buie, 1997). We present the first observations of Pluto and Charon with a well-calibrated astrometric instrument—the fine guidance sensors on the Hubble Space Telescope. We observed the motion of Pluto and Charon about the system barycenter over 4.4 days (69% of an orbital period) and determined the mass ratio to be 0.122±0.008 which implies a density of 1.8 to 2.1 g cm−3 for Pluto and 1.6 to 1.8 g cm−3 for Charon. The resulting rock-mass fractions for Pluto and Charon are higher than expected for bodies formed in the outer solar nebula, possibly indicating significant postaccretion loss of volatiles.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号