首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   2篇
  国内免费   2篇
测绘学   2篇
大气科学   1篇
地球物理   103篇
地质学   9篇
海洋学   4篇
天文学   4篇
综合类   1篇
自然地理   6篇
  2023年   1篇
  2020年   1篇
  2017年   4篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2010年   24篇
  2009年   66篇
  2007年   2篇
  2006年   1篇
  2005年   8篇
  2004年   3篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1997年   2篇
  1993年   4篇
  1984年   2篇
  1947年   1篇
排序方式: 共有130条查询结果,搜索用时 15 毫秒
31.
32.
新疆幅员广阔,深居内陆,自然复杂,人文多样,是中国旅游资源特丰区。通过组织跨部门,多学科的专家按照《中国旅游资源普查规范》(试行稿)实地考察,对新疆旅游资源的丰度、类型、功能、地域结构给出了新评价,确认它是中国旅游业发展的重要资源后备基地。从新疆地处欧亚大陆腹心,毗邻八国的特殊区位,以及世界旅游重心东移,中国旅游资源开发向内陆推进的多维多元化出发,提出了树立超前意识以市场为导向,深层次,高品位,多元化开发新疆旅游资源的新方略。即确立发展大旅游业的战略观念构建“引爆工程”、“转动效应”的特种旅游、专题旅游和常规旅游项目,完善旅游管理体制,发展以航空运输为主体的综合运输网络,强化旅游软硬件设施,建设能满足不同层次需求、富有特色功能、具有国际意义的国家级旅游地域新网络系统。  相似文献   
33.
34.
35.
1 Harmful Organisms in Xinjiang Cotton-Growing BeltThe harmful organisms in Xinjiang cotton-growing belt are mainly diseases, insects and weeds. The diseases include Verticillium albo-atrum, cotton-root decaying disease and cotton-boll decaying disease, while the harmful insects include cotton aphids (Aphis gosspii), cotton mites, cotton boll-worms (Heliothis armigera), cotton thrips (Thrips. sp), Lygus pratersis and cutworms. Their harmful effects vary in different places but all of them …  相似文献   
36.
介绍了最初为火星飞行计划而开发的数字相机的各种可能的航空应用.这种多光谱、多线条和多立体遥控自动扫描设备能提供分辨率为10~20cm的数字正射影像和数字地面模型.当测量高度为6000m时,像素尺寸为24cm,并且在x,y方向的精度为 20cm,z方向的精度为 30cm.从1997年5月进行第一次航空试验以来,HRSC-A系统已经成功地应用在各种领域.本文是结合DLR、ISTAR(法国)和Geodan geodesie(荷兰)的共同努力而完成的,对电信网络规划、GIS应用、3D模型、环境监测、地图制图/地图更新和可视化等应用领域进行了重点试验.  相似文献   
37.
Percolation and Particle Transport in the Unsaturated Zone of a Karst Aquifer   总被引:14,自引:0,他引:14  
Recharge and contamination of karst aquifers often occur via the unsaturated zone, but the functioning of this zone has not yet been fully understood. Therefore, irrigation and tracer experiments, along with monitoring of rainfall events, were used to examine water percolation and the transport of solutes, particles, and fecal bacteria between the land surface and a water outlet into a shallow cave. Monitored parameters included discharge, electrical conductivity, temperature, organic carbon, turbidity, particle-size distribution (PSD), fecal indicator bacteria, chloride, bromide, and uranine. Percolation following rainfall or irrigation can be subdivided into a lag phase (no response at the outlet), a piston-flow phase (release of epikarst storage water by pressure transfer), and a mixed-flow phase (increasing contribution of freshly infiltrated water), starting between 20 min and a few hours after the start of recharge event. Concerning particle and bacteria transport, results demonstrate that (1) a first turbidity signal occurs during increasing discharge due to remobilization of particles from fractures (pulse-through turbidity); (2) a second turbidity signal is caused by direct particle transfer from the soil (flow-through turbidity), often accompanied by high levels of fecal indicator bacteria, up to 17,000 Escherichia coli /100 mL; and (3) PSD allows differentiation between the two types of turbidity. A relative increase of fine particles (0.9 to 1.5 μm) coincides with microbial contamination. These findings help quantify water storage and percolation in the epikarst and better understand contaminant transport and attenuation. The use of PSD as "early-warning parameter" for microbial contamination in karst water is confirmed.  相似文献   
38.
Sequential time-step images acquired using nuclear magnetic resonance (NMR) show the displacement of deuterated water (D2O) by fresh water within two limestone samples characterized by a porous and permeable limestone matrix of peloids and ooids. These samples were selected because they have a macropore system representative of some parts of the eogenetic karst limestone of the Biscayne Aquifer in southeastern Florida. The macroporosity, created by the trace fossil Ophiomorpha , is principally well connected and of centimeter scale. These macropores occur in broadly continuous stratiform zones that create preferential flow layers within the hydrogeologic units of the Biscayne. This arrangement of porosity is important because in coastal areas, it could produce a preferential pathway for salt water intrusion. Two experiments were conducted in which samples saturated with D2O were placed in acrylic chambers filled with fresh water and examined with NMR. Results reveal a substantial flux of fresh water into the matrix porosity with a simultaneous loss of D2O. Specifically, we measured rates upward of 0.001 mL/h/g of sample in static conditions, and perhaps as great as 0.07 mL/h/g of sample when fresh water continuously flows past a sample at velocities less than those found within stressed areas of the Biscayne. These experiments illustrate how fresh water and D2O, with different chemical properties, migrate within one type of matrix porosity found in the Biscayne. Furthermore, these experiments are a comparative exercise in the displacement of sea water by fresh water in the matrix of a coastal, karst aquifer since D2O has a greater density than fresh water.  相似文献   
39.
A Potential-Based Inversion of Unconfined Steady-State Hydraulic Tomography   总被引:1,自引:0,他引:1  
The importance of estimating spatially variable aquifer parameters such as transmissivity is widely recognized for studies in resource evaluation and contaminant transport. A useful approach for mapping such parameters is inverse modeling of data from series of pumping tests, that is, via hydraulic tomography. This inversion of field hydraulic tomographic data requires development of numerical forward models that can accurately represent test conditions while maintaining computational efficiency. One issue this presents is specification of boundary and initial conditions, whose location, type, and value may be poorly constrained. To circumvent this issue when modeling unconfined steady-state pumping tests, we present a strategy that analyzes field data using a potential difference method and that uses dipole pumping tests as the aquifer stimulation. By using our potential difference approach, which is similar to modeling drawdown in confined settings, we remove the need for specifying poorly known boundary condition values and natural source/sink terms within the problem domain. Dipole pumping tests are complementary to this strategy in that they can be more realistically modeled than single-well tests due to their conservative nature, quick achievement of steady state, and the insensitivity of near-field response to far-field boundary conditions. After developing the mathematical theory, our approach is first validated through a synthetic example. We then apply our method to the inversion of data from a field campaign at the Boise Hydrogeophysical Research Site. Results from inversion of nine pumping tests show expected geologic features, and uncertainty bounds indicate that hydraulic conductivity is well constrained within the central site area.  相似文献   
40.
A travel time distribution based on a particle-tracking analysis in a ground water model containing weak sinks is often uncertain because whether a particle is discharged or allowed to pass through a weak sink is unresolved by particle-tracking theory. We present a probability-based method to derive an objective travel time distribution in models containing weak sinks. The method discharges a fraction of the particle at the weak sink and allows the remaining fraction to pass through the weak sink. The weight of the discharged fraction depends on the ratio of the sink flux to the influx into the weak sink cell. We tested this approach on a coarse (100 × 100 m) and a fine (25 × 25 m) horizontal resolution regional scale ground water model (34.5 × 24 km). We compared the travel time distributions in a small subcatchment derived from particle-tracking analysis with one derived from a transport model. We found that the particle-tracking analysis with the coarse model underestimated the travel time distribution of the catchment compared to the transport solution or a particle-tracking analysis with the fine model. The underestimation of travel times with the coarse model was a result of a large area covered by sink cells in this model and the more accurate flow patterns simulated by the fine model. The probability-based method presented here compares favorably with a solute transport solution and provides an accurate travel time distribution when used with a fine-resolution ground water model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号