Based on classic iterative computation results, new equations to calculate the surface turbulent transfer coefficients are
proposed, which allow for large ratios of the momentum and heat roughness lengths. Compared to the Launiainen scheme, our
proposed scheme generates results closer to classical iterative computations. Under unstable stratification, the relative
error in the Launiainen scheme increases linearly with increasing instability, even exceeding 15%, while the relative error
of the present scheme is always less than 8.5%. Under stable stratification, the Launiainen scheme uses two equations, one
for 0 < RiB ≤ 0.08 and another for 0.08 < RiB ≤ 0.2, and does not consider the condition that RiB > 0.2, while its relative errors in the region 0 < RiB ≤ 0.2 exceed 31 and 24% for momentum and heat transfer coefficients, respectively. In contrast, the present scheme uses only
one equation for 0 < RiB ≤ 0.2 and another equation for RiB > 0.2, and the relative error of the present scheme is always less than 14%. 相似文献
This paper presents a case study on the Mogangling landslide and its characteristics and geological mechanism. The Mogangling landslide is a giant rock landslide located at the intersection of Dadu river and Moxi river. It is a landslide triggered by an earthquake with large magnitude that occurred in 18th century. Based on detailed site investigation, it shows the Mogangling landslide developed in the Kangding complex strata, composed of completely decomposed aggregates of massive-block stone, debris and soil with some gravels, pebbles and sand layer found distributed in front of the landslide. The control factor of the deformation of this landslide is the combined effect of Detuo fault which is located under the slope, and the regional stress formed along structural planes as well as the free surfaces formed by river cutting. Therefore, when the Kangding-Moxi earthquake (Ms =7.7) occurred on 1st June, 1786, due to seismic shaking, topographic amplification effects and back slope effects, the Mogangling landslide occurred. The Dadu River is the most important river for hydropower development in China; large-scale seismic landslides along the Dadu River are the most important geological issue during the construction of hydropower stations. Therefore, this research is important from the point of view of economic and social benefits. 相似文献