A total of 219 agricultural soil and 48 vegetable samples were collected from the midstream and downstream of the Xiangjiang River(the Hengyang-Changsha section)in Hunan Province.The accumulation characteristics,spatial distribution and potential risk of heavy metals in the agricultural soils and vegetables were depicted.There are higher accumulations of heavy metals such as As,Cd,Cu,Ni,Pb and Zn in agricultural soils,and the contents of Cd(2.44 mg kg^-1 ),Pb(65.00 mg kg^-1 )and Zn(144.13 mg kg^-1 )are 7.97,3.69 and 1.63 times the corresponding background contents in soils of Hunan Province,respectively. 13.2%of As,68.5%of Cd,2.7%of Cu,2.7%of Ni,8.7%of Pb and 15.1%of Zn in soil samples from the investigated sites exceeded the maximum allowable heavy metal contents in the China Environmental Quality Standard for Soils(GB15618-1995,Grade Ⅱ).The pollution characteristics of multi-metals in soils are mainly due to Cd.The contents of As,Cd,Cu,Pb and Zn in vegetable soils are significantly higher than the contents in paddy soils.95.8%, 68.8%,10.4%and 95.8%of vegetable samples exceeded the Maximum Levels of Contaminants in Foods(GB2762-2005)for As,Cd,Ni and Pb concentrations,respectively.There are significantly positive correlations between the concentrations of Cd,Pb and Zn in vegetables and the concentrations in the corresponding vegetable soils(p〈0.01).It is very necessary to focus on the potential risk of heavy metals for food safety and human health in agricultural soils and vegetables in the midstream and downstream of the Xiangjiang River,Hunan Province of China. 相似文献
By combining the carbon cycle model with the records of carbonate and organic (kerogen) carbon isotope, this paper presents
the calculation of the fraction of organic carbon burial (forg) of beds 23–40 at the global boundary stratotype section and point (GSSP) of the Permian-Triassic boundary at Meishan, Zhejiang
Province. The resulting calculation produces two episodes of forg maxima observed to occur at beds 23–24 and 27–29, which respectively corresponds to the two episodic anoxic events indicated
by the flourish of green sulfur bacteria. Two episodic forg minima occurred at beds 25–26 and 32–34, generally coincident with the flourish of cyanobacteria (bed 26 and upper part of
beds 29 to 34) as shown by the high value of 2-melthyhopnoanes. It appears that the forg is related to the redox conditions, with greater forg values observed under the reductive condition. The relationship between forg and the total organic carbon (TOC) content was complex. The forg value was low at some beds with a high TOC content (such as bed 26), while high observed at some beds with a low TOC content
(e.g. bed 27). This association infers the important contribution of primary productivity to the TOC content. The original
organic burial could be thus calculated through the configuration of the function of the primary productivity and forg, which can be used to correct the residual TOC measured today. This investigation indicates that compiling the organic-inorganic
carbon isotopes with the carbon cycle model favors to understand the fraction of organic carbon burial, providing information
for the reconstruction of the coupling among biota, environments and organic burial.
Journal of China University of Geosciences, 2007, 32(6): 767–773 [译自: 地球科学—中国地质大学学报] 相似文献
A 3×3 complete diallel cross comprising three families of the clam Meretrix meretrix(P1, P2 and P3) was used to determine the combining ability of parental families and heterosis of F1 under indoor and openair environments for growth traits. Analysis of variance for shell length and whole body weight indicated highly significant cross effects, environment effects and the interaction of cross by environment. General combining ability(GCA) and specific combing ability exhibited great variation among crosses and between two environments. Pooled over environments, P2 was the top combiner among the three parental families for both traits studied. The cross of P1 and P3 had the highest SCA. Additionally, significant reciprocal effects were observed. For individual environment, about half of the crossbred combinations showed favorable Mid-parent heterosis(MPH)(1%) for the shell length and whole body weight. Our data has shown that non-additive genetic and reciprocal effects constituted the major sources of genetic variation for both shell length and whole body weight, which indicates that crossbreeding among selective families could further explore the heterotic effects. 相似文献