首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30577篇
  免费   1523篇
  国内免费   1713篇
测绘学   1136篇
大气科学   3040篇
地球物理   6825篇
地质学   11586篇
海洋学   2778篇
天文学   5598篇
综合类   562篇
自然地理   2288篇
  2022年   319篇
  2021年   423篇
  2020年   400篇
  2019年   405篇
  2018年   554篇
  2017年   551篇
  2016年   757篇
  2015年   562篇
  2014年   743篇
  2013年   1481篇
  2012年   810篇
  2011年   1106篇
  2010年   940篇
  2009年   1169篇
  2008年   1095篇
  2007年   1081篇
  2006年   1074篇
  2005年   930篇
  2004年   927篇
  2003年   892篇
  2002年   900篇
  2001年   735篇
  2000年   787篇
  1999年   805篇
  1998年   750篇
  1997年   774篇
  1996年   621篇
  1995年   637篇
  1994年   587篇
  1993年   535篇
  1992年   472篇
  1991年   415篇
  1990年   440篇
  1989年   354篇
  1988年   381篇
  1987年   403篇
  1986年   363篇
  1985年   501篇
  1984年   531篇
  1983年   538篇
  1982年   433篇
  1981年   433篇
  1980年   444篇
  1979年   390篇
  1978年   399篇
  1977年   346篇
  1976年   377篇
  1975年   341篇
  1974年   380篇
  1973年   365篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
青岛冷水团的消亡机理研究   总被引:1,自引:0,他引:1  
本文基于多年月平均水温资料,分析了青岛冷水团的长消过程,并利用气候态月平均大气数据和数值模拟结果,探讨了青岛冷水团的消亡机理。结果表明,青岛冷水团3月出现,4月成型,5月最盛,6月减弱,7月消失;南黄海6-7月间偏南风的增强和温跃层以下反气旋涡的减弱是青岛冷水团消亡的动力机制,而海面净热通量的下传和水平热量的输入则是青岛冷水团消亡的热力机制。  相似文献   
992.
在登陆海南岛之前,台风威马逊在南海北部从热带风暴级别迅速增强成为超强台风。观测数据的分析结果显示,海洋上层的异常暖水在威马逊的迅速增强过程中扮演了重要的角色。威马逊期间,南海北部的海表面温度相比于气候态海表面温度暖很多。这部分异常暖水为威马逊提供了更多的能量,从而导致了威马逊的迅速增强。数值模拟结果进一步证明,南海北部的暖水在台风威马逊的迅速增强过程中起重要作用。如果没有这团异常暖水的影响,威马逊只增强25 hPa,仅为有暖水影响条件下增强程度的58.1%。  相似文献   
993.
The thermal profile of a streambed is affected by a number of factors including: temperatures of stream water and groundwater, hydraulic conductivity, thermal conductivity, heat capacity of the streambed, and the geometry of hyporheic flow paths. Changes in these parameters over time cause changes in thermal profiles. In this study, temperature data were collected at depths of 30, 60, 90 and 150 cm at six streambed wells 5 m apart along the thalweg of Little Kickapoo Creek, in rural central Illinois, USA. This is a third-order low-gradient baseflow-fed stream. A positive temperature gradient with inflection at 90-cm depth was observed during the summer period. A negative temperature gradient with inflection at 30 cm was observed during the winter period, which suggests greater influence of stream-water temperatures in the substrate during the summer. Thermal models of the streambed were built using VS2DHI to simulate the thermal profiles observed in the field. Comparison of the parameters along with analysis of temperature envelopes and Peclet numbers suggested greater upwelling and stability in temperatures during the winter than during the summer. Upwelling was more pronounced in the downstream reach of the pool in the riffle and pool sequence.  相似文献   
994.
995.
To determine the long-term landscape evolution of the Albertine Rift in East Africa, low-temperature thermochronology was applied and the cooling history constrained using thermal history modelling. Acquired results reveal (1) “old” cooling ages, with predominantly Devonian to Carboniferous apatite fission-track ages, Ordovician to Silurian zircon (U–Th)/He ages and Jurassic to Cretaceous apatite (U–Th–Sm)/He ages; (2) protracted cooling histories of the western rift shoulder with major phases of exhumation in mid-Palaeozoic and Palaeogene to Neogene times; (3) low Palaeozoic and Neogene erosion rates. This indicates a long residence time of the analysed samples in the uppermost crust, with the current landscape surface at a near-surface position for hundreds of million years. Apatite He cooling ages and thermal history models indicate moderate reheating in Jurassic to Cretaceous times. Together with the cooling age distribution, a possible Albertine high with a distinct relief can be inferred that might have been a source area for the Congo Basin.  相似文献   
996.
997.
Mangrove Lagoon, located on the island of St. Croix, US Virgin Islands (USVI), is one of few actively bioluminescent lagoons in a location experiencing significant anthropogenic impacts. The bioluminescence is due to an abundance of the dinoflagellate Pyrodinium bahamense in the water column. We recovered surface sediments and sediment cores from Mangrove Lagoon to analyze the spatial distribution and temporal variability of P. bahamense cysts in this system. Surface sediment P. bahamense cyst concentrations ranged from 0 to 466 cysts g?1 dry sediment, with higher abundances associated with elevated surface water nutrient concentrations and a mixed terrestrial–marine organic matter source regime. In combination with available bioassay data, we hypothesize that phytoplankton utilize nutrients rapidly and subsequent decay of organic matter makes nutrients available for dinoflagellates at the sediment–water interface in the eastern and northern quadrants of the lagoon. However, the nutrients are rapidly exhausted during counterclockwise lagoon circulation resulting in the decline of primary productivity and dinoflagellate abundance in the western quadrants. Downcore profiles suggest that P. bahamense blooms have been occurring for decades, declining in recent years. No cysts were present in sediments predating dredging activities of the 1960s that created Mangrove Lagoon. Recent reductions in cyst abundance may be the result of limited primary productivity caused by restricted water exchange with Salt River Bay due to shallowing of a sill at the mouth of the lagoon. This research highlights the need for more comprehensive geochemical and fossil analyses to better understand long-term ecological variability and inform conservation efforts of these unique habitats.  相似文献   
998.
Mountainous areas surrounding the Campanian Plain and the Somma-Vesuvius volcano (southern Italy) are among the most risky areas of Italy due to the repeated occurrence of rainfall-induced debris flows along ash-fall pyroclastic soil-mantled slopes. In this geomorphological framework, rainfall patterns, hydrological processes taking place within multi-layered ash-fall pyroclastic deposits and soil antecedent moisture status are the principal factors to be taken into account to assess triggering rainfall conditions and the related hazard. This paper presents the outcomes of an experimental study based on integrated analyses consisting of the reconstruction of physical models of landslides, in situ hydrological monitoring, and hydrological and slope stability modeling, carried out on four representative source areas of debris flows that occurred in May 1998 in the Sarno Mountain Range. The hydrological monitoring was carried out during 2011 using nests of tensiometers and Watermark pressure head sensors and also through a rainfall and air temperature recording station. Time series of measured pressure head were used to calibrate a hydrological numerical model of the pyroclastic soil mantle for 2011, which was re-run for a 12-year period beginning in 2000, given the availability of rainfall and air temperature monitoring data. Such an approach allowed us to reconstruct the regime of pressure head at a daily time scale for a long period, which is representative of about 11 hydrologic years with different meteorological conditions. Based on this simulated time series, average winter and summer hydrological conditions were chosen to carry out hydrological and stability modeling of sample slopes and to identify Intensity-Duration rainfall thresholds by a deterministic approach. Among principal results, the opposing winter and summer antecedent pressure head (soil moisture) conditions were found to exert a significant control on intensity and duration of rainfall triggering events. Going from winter to summer conditions requires a strong increase of intensity and/or duration to induce landslides. The results identify an approach to account for different hazard conditions related to seasonality of hydrological processes inside the ash-fall pyroclastic soil mantle. Moreover, they highlight another important factor of uncertainty that potentially affects rainfall thresholds triggering shallow landslides reconstructed by empirical approaches.  相似文献   
999.
Climate effects on hydrology impart high variability to water-quality properties, including nutrient loadings, concentrations, and phytoplankton biomass as chlorophyll-a (chl-a), in estuarine and coastal ecosystems. Resolving long-term trends of these properties requires that we distinguish climate effects from secular changes reflecting anthropogenic eutrophication. Here, we test the hypothesis that strong climatic contrasts leading to irregular dry and wet periods contribute significantly to interannual variability of mean annual values of water-quality properties using in situ data for Chesapeake Bay. Climate effects are quantified using annual freshwater discharge from the Susquehanna River together with a synoptic climatology for the Chesapeake Bay region based on predominant sea-level pressure patterns. Time series of water-quality properties are analyzed using historical (1945–1983) and recent (1984–2012) data for the bay adjusted for climate effects on hydrology. Contemporary monitoring by the Chesapeake Bay Program (CBP) provides data for a period since mid-1984 that is significantly impacted by anthropogenic eutrophication, while historical data back to 1945 serve as historical context for a period prior to severe impairments. The generalized additive model (GAM) and the generalized additive mixed model (GAMM) are developed for nutrient loadings and concentrations (total nitrogen—TN, nitrate?+?nitrate—NO2?+?NO3) at the Susquehanna River and water-quality properties in the bay proper, including dissolved nutrients (NO2?+?NO3, orthophosphate—PO4), chl-a, diffuse light attenuation coefficient (K D (PAR)), and chl-a/TN. Each statistical model consists of a sum of nonlinear functions to generate flow-adjusted time series and compute long-term trends accounting for climate effects on hydrology. We present results identifying successive periods of (1) eutrophication ca. 1945–1980 characterized by approximately doubled TN and NO2?+?NO3 loadings, leading to increased chl-a and associated ecosystem impairments, and (2) modest decreases of TN and NO2?+?NO3 loadings from 1981 to 2012, signaling a partial reversal of nutrient over-enrichment. Comparison of our findings with long-term trends of water-quality properties for a variety of estuarine and coastal ecosystems around the world reveals that trends for Chesapeake Bay are weaker than for other systems subject to strenuous management efforts, suggesting that more aggressive actions than those undertaken to date will be required to counter anthropogenic eutrophication of this valuable resource.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号