If the upstream boundary conditions are prescribed based on the incident wave only, the time-dependent numerical models cannot effectively simulate the wave field when the physical or spurious reflected waves become significant. This paper describes carefully an approach to specifying the incident wave boundary conditions combined with a set sponge layer to absorb the reflected waves towards the incident boundary. Incorporated into a time-dependent numerical model, whose governing equations are the Boussinesq-type ones, the effectiveness of the approach is studied in detail. The general boundary conditions, describing the down-wave boundary conditions are also generalized to the case of random waves. The numerical model is in detail examined. The test cases include both the normal one-dimensional incident regular or random waves and the two-dimensional oblique incident regular waves. The calculated results show that the present approach is effective on damping the reflected waves towards the incident wave boundary. 相似文献
Voids caused by shadow, layover, and decorrelation usually occur in digital elevation models (DEMs) of mountainous areas that are derived from interferometric synthetic aperture radar (InSAR) datasets. The presence of voids degrades the quality and usability of the DEMs. Thus, void removal is considered as an integral part of the DEM production using InSAR data. The fusion of multiple DEMs has been widely recognized as a promising way for the void removal. Because the vertical accuracy of multiple DEMs can be different, the selection of optimum weights becomes a key problem in the fusion and is studied in this article. As a showcase, two high-resolution InSAR DEMs near Mt. Qilian in northwest China are created and then merged. The two pairs of InSAR data were acquired by TerraSAR-X from an ascending orbit and COSMO-SkyMed from a descending orbit. A maximum likelihood fusion scheme with the weights optimally determined by the height of ambiguity and the variance of phase noise is adopted to syncretize the two DEMs in our study. The fused DEM has a fine spatial resolution of 10 m and depicts the landform of the study area well. The percentage of void cells in the fused DEM is only 0.13 %, while 6.9 and 5.7 % of the cells in the COSMO-SkyMed DEM and the TerraSAR-X DEM are originally voids. Using the ICESat/GLAS elevation data and the Chinese national DEM of scale 1:50,000 as references, we evaluate vertical accuracy levels of the fused DEM as well as the original InSAR DEMs. The results show that substantial improvements could be achieved by DEM fusion after atmospheric phase screen removal. The quality of fused DEM can even meet the high-resolution terrain information (HRTI) standard. 相似文献
The problem of disc cutter wear is inevitable when shield or TBM excavating hard rock for a long distance, thus, the study of disc cutter wear model has an important project value on predicting its service life and replacement opportunity. It is put forward by analyzing disc cutter wear mechanism that the main wear form is abrasive wear, which is based on plastic removal mechanism. Then, disc cutter wear rate and linear wear rate prediction models are obtained by approximate calculation and mathematical deduction, which are based on Rabinowicz equation and CSM model. At last, the two models are verified through field test data from three projects, and the results show that the prediction model can accurately reflect the real wear situation of disc cutter. 相似文献
With a detailed study on petrology, mineralogy and geochemistry of some important Ordovician carbonate well core samples in Tazhong uplift of Tarim Basin, the distinguishing symbols of hydrothermal karstification are first put forward as the phenomena of rock hot depigmentation, hot cataclasm and the appearance of typical hydrothermal minerals such as fluorite, barite, pyrite, quartz and sphalerite. The main homogenization temperatures of primary fluid inclusions in fluorite are from 260 to 310°C, indicating the temperature of hydrothermal fluid. The fluid affected the dissolved rocks and showed typical geochemistry features with low contents of Na and Mg, and high contents of Fe, Mn and Si. The ratio of 3He/4He is 0.02Ra, indicating the fluid from the typical continental crust. The hydrothermal fluid karstification pattern may be described as follows: the hot fluid is from the Permian magma, containing dissolving ingredients of CO2 and H2S, and shifts along fault, ruptures and unconformity, and dissolves the surrounding carbonates while it flows. The mechanism of hydrothermal karstification is that the mixture of two or more fluids, which have different ion intensity and pH values, becomes a new unsaturated fluid to carbonates. The hydrothermal karstification is an important process to form hypo-dissolved pinholes in Ordovician carbonates of Tazhong uplift of Tarim Basin, and the forming of hydrothermal minerals also has favorable influence on carbonate reservoirs.