首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7891篇
  免费   1797篇
  国内免费   2412篇
测绘学   903篇
大气科学   1607篇
地球物理   1987篇
地质学   3810篇
海洋学   1567篇
天文学   139篇
综合类   803篇
自然地理   1284篇
  2024年   47篇
  2023年   156篇
  2022年   474篇
  2021年   599篇
  2020年   434篇
  2019年   524篇
  2018年   509篇
  2017年   456篇
  2016年   494篇
  2015年   522篇
  2014年   513篇
  2013年   636篇
  2012年   612篇
  2011年   618篇
  2010年   604篇
  2009年   531篇
  2008年   490篇
  2007年   480篇
  2006年   407篇
  2005年   359篇
  2004年   292篇
  2003年   224篇
  2002年   210篇
  2001年   248篇
  2000年   207篇
  1999年   246篇
  1998年   191篇
  1997年   177篇
  1996年   141篇
  1995年   138篇
  1994年   109篇
  1993年   105篇
  1992年   74篇
  1991年   62篇
  1990年   49篇
  1989年   39篇
  1988年   27篇
  1987年   16篇
  1986年   22篇
  1985年   9篇
  1984年   4篇
  1983年   7篇
  1982年   9篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   7篇
  1958年   3篇
  1957年   4篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
211.
General circulation model outputs are rarely used directly for quantifying climate change impacts on hydrology, due to their coarse resolution and inherent bias. Bias correction methods are usually applied to correct the statistical deviations of climate model outputs from the observed data. However, the use of bias correction methods for impact studies is often disputable, due to the lack of physical basis and the bias nonstationarity of climate model outputs. With the improvement in model resolution and reliability, it is now possible to investigate the direct use of regional climate model (RCM) outputs for impact studies. This study proposes an approach to use RCM simulations directly for quantifying the hydrological impacts of climate change over North America. With this method, a hydrological model (HSAMI) is specifically calibrated using the RCM simulations at the recent past period. The change in hydrological regimes for a future period (2041–2065) over the reference (1971–1995), simulated using bias‐corrected and nonbias‐corrected simulations, is compared using mean flow, spring high flow, and summer–autumn low flow as indicators. Three RCMs driven by three different general circulation models are used to investigate the uncertainty of hydrological simulations associated with the choice of a bias‐corrected or nonbias‐corrected RCM simulation. The results indicate that the uncertainty envelope is generally watershed and indicator dependent. It is difficult to draw a firm conclusion about whether one method is better than the other. In other words, the bias correction method could bring further uncertainty to future hydrological simulations, in addition to uncertainty related to the choice of a bias correction method. This implies that the nonbias‐corrected results should be provided to end users along with the bias‐corrected ones, along with a detailed explanation of the bias correction procedure. This information would be especially helpful to assist end users in making the most informed decisions.  相似文献   
212.
213.
214.
Prediction intervals (PIs) are commonly used to quantify the accuracy and precision of a forecast. However, traditional ways to construct PIs typically require strong assumptions about data distribution and involve a large computational burden. Here, we improve upon the recent proposed Lower Upper Bound Estimation method and extend it to a multi‐objective framework. The proposed methods are demonstrated using a real‐world flood forecasting case study for the upper Yangtze River Watershed. Results indicate that the proposed methods are able to efficiently construct appropriate PIs, while outperforming other methods including the widely used Generalized Likelihood Uncertainty Estimation approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
215.
Wu  Jie  Chu  Jun-Fei  Liang  Liang 《Natural Hazards》2015,84(1):279-296

Regarded as an effective method for treating the global warming problem, carbon emissions abatement (CEA) allocation has become a hot research topic and has drawn great attention recently. However, the traditional CEA allocation methods generally set efficient targets for the decision-making units (DMUs) using the farthest targets, which neglects the DMUs’ unwillingness to maximize (minimize) some of their inputs (outputs). In addition, the total CEA level is usually subjectively determined without any consideration of the current carbon emission situations of the DMUs. To surmount these deficiencies, we incorporate data envelopment analysis and its closest target technique into the CEA allocation problem. Firstly, a two-stage approach is proposed for setting the optimal total CEA level for the DMUs. Then, another two-stage approach is given for allocating the identified optimal total CEA among the DMUs. Our approach provides more flexibility when setting new input and output targets for the DMUs in CEA allocation. Finally, the proposed approaches are applied for CEA target setting and allocation for 20 Asia-Pacific Economic Cooperation economies.

  相似文献   
216.
This paper assesses linear regression‐based methods in downscaling daily precipitation from the general circulation model (GCM) scale to a regional climate model (RCM) scale (45‐ and 15‐km grids) and down to a station scale across North America. Traditional downscaling experiments (linking reanalysis/dynamical model predictors to station precipitation) as well as nontraditional experiments such as predicting dynamic model precipitation from larger‐scale dynamic model predictors or downscaling dynamic model precipitation from predictors at the same scale are conducted. The latter experiments were performed to address predictability limit and scale issues. The results showed that the downscaling of daily precipitation occurrence was rarely successful at all scales, although results did constantly improve with the increased resolution of climate models. The explained variances for downscaled precipitation amounts at the station scales were low, and they became progressively better when using predictors from a higher‐resolution climate model, thus showing a clear advantage in using predictors from RCMs driven by reanalysis at its boundaries, instead of directly using reanalysis data. The low percentage of explained variances resulted in considerable underestimation of daily precipitation mean and standard deviation. Although downscaling GCM precipitation from GCM predictors (or RCM precipitation from RCM predictors) cannot really be considered downscaling, as there is no change in scale, the exercise yields interesting information as to the limit in predictive ability at the station scale. This was especially clear at the GCM scale, where the inability of downscaling GCM precipitation from GCM predictors demonstrates that GCM precipitation‐generating processes are largely at the subgrid scale (especially so for convective events), thus indicating that downscaling precipitation at the station scale from GCM scale is unlikely to be successful. Although results became better at the RCM scale, the results indicate that, overall, regression‐based approaches did not perform well in downscaling precipitation over North America. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
217.
This research demonstrates the spatiotemporal variations of albedo on nine glaciers in western China during 2000–2011, by the albedo derived from two types of datasets: Landsat TM/ETM + images and MOD10A1 product. Then, the influence factors of glacier albedo and its relationship with glacier mass balance are also analyzed by the correlation approach, which is frequently used in geostatistics. The paper finds that there are different spatiotemporal variations over the glaciers in western China: (1) For a single glacier, the albedo varies gently with altitude on its tongue and increases fast in the middle part, while in the accumulation zones, the albedo value appears in the form of fluctuation. This could provide a quantitative method to retrieve the snowline by determining the threshold albedo value of snowpack and bare ice. (2) For the glaciers in western China, the albedo decreases with distance to the center of Tibetan Plateau (TP). This may relate to the elevation of glacier, for the speed of glacier retreat highly depends on air temperature. (3) In the summer period, albedo on most glaciers declines over the last 12 years, and it decreases much faster in southeastern TP than other regions, for which air temperature overwhelms the black carbon concentration. In addition, the trend of glacier albedo in summer is greatly correlated with that of measured glacier mass balance, which implies that the long‐term albedo datasets by remote sensing technology could be used to monitor and predict the change of glacier mass balance in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
218.
219.
The hydrology and water balance of megadunes and lakes have been investigated in the Badain Jaran Desert of China. Field observations and analyses of sand layer water content, field capacity, secondary salt content, and grain size reveal 3 types of important natural phenomenon: (a) vegetation bands on the leeward slope of the megadunes reflect the hydrological regime within the sandy vadose zone; (b) seepage, wet sand deposits, and secondary salt deposits indicate the pattern of water movement within the sandy vadose zone; (c) zones of groundwater seeps and descending springs around the lakes reflect the influence of the local topography on the hydrological regime of the megadunes. The seepage exposed on the sloping surface of the megadunes and gravity water contained within the sand layer confirm the occurrence of preferential flow within the vadose zone of the megadunes. Alternating layers of coarse and fine sand create the conditions for the formation of preferential flows. The preferential flows promote movement of water within the sand layer water that leads to deep penetration of water within the megadunes and ultimately to the recharging of groundwater and lake water. Our results indicate that a positive water balance promotes recharge of the megadunes, which depends on the high permeability of the megadune material, the shallow depth of the surface sand layer affected by evaporation, the occurrence of rainfall events exceeding 15 mm, and the sparse vegetation cover. Water balance estimates indicate that the annual water storage of the megadunes is about 7.5 mm, accounting for only 8% of annual precipitation; however, the shallow groundwater per unit area under the megadunes receives only 3.6% of annual precipitation, but it is still able to maintain a dynamic balance of the lake water. From a water budget perspective, the annual water storage in the megadunes is sufficient to serve as a recharge source for lake water, thereby enabling the long‐term persistence of the lakes. Overall, our findings demonstrate that precipitation is a significant component of the hydrological cycle in arid deserts.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号