With the depletion of mineral resources on land, seafloor massive sulfide deposits have the potential to become as important for exploration, development and mining as those on land. However, it is difficult to investigate the ocean environment where seafloor massive sulfide deposits are located. Thus, improving prospecting efficiency by reducing the exploration search space through mineral prospectivity mapping (MPM) is desirable. MPM has been used in the exploration for seafloor deposits on regional scales, e.g., the Mid-Atlantic Ridge and Arctic Ridge. However, studies of MPM on ultraslow-spreading ridges on segment scales to aid exploration for seafloor massive sulfide have not been carried out to date. Here, data of water depth, geology and hydrothermal plume anomalies were analyzed and the weights-of-evidence method was used to study the metallogenic regularity and to predict the potential area for seafloor massive sulfide exploration in 48.7°–50.5° E segments on the ultraslow spreading Southwest Indian Ridge. Based on spatial analysis, 11 predictive maps were selected to establish a mineral potential model. Weight values indicate that the location of seafloor massive sulfide deposits is correlated mainly with mode-E faults and oceanic crust thickness in the study area, which correspond with documented ore-controlling factors on other studied ultraslow-spreading ridges. In addition, the detachment fault and ridge axis, which reflect the deep hydrothermal circulation channel and magmatic activities, also play an important role. Based on the posterior probability values, 3 level A, 2 level B and 2 level C areas were identified as targets for further study. The MPM results were helpful for narrowing the search space and have implications for investigating and evaluating seafloor massive sulfide resources in the study area and on other ultraslow-spreading ridges.
用KCl、肾上腺素(EPI)、去甲肾上腺素(NE)、L—DOPA和GABA(γ-氨基丁酸)进行了不同浓度不同处理时间对硬壳蛤(Mercenaria mercenaria L )幼虫变态诱导实验。结果表明,KCl、肾上腺素、去甲肾上腺素和DDOPA对硬壳蛤幼虫的变态均有诱导作用,而GABA的诱导作用不显著。KCl的最佳诱导浓度随处理时间不同而有所不同。处理时间为1~24,48,72h时KCl的最佳诱导浓度分别为33.56,20.13~26.85,13.42mmol/L。肾上腺素和去甲肾上腺素的诱导作用与浓度和处理时间均有关。肾上腺素的最佳处理浓度为100μmol/L,最佳处理时间均为8h,此时幼虫变态率提高最大,为36.97个百分点。当去甲肾上腺素的诱导浓度为100μmol/L,处理时间为8~16h时,幼虫变态率提高也较大,均大于18个百分点,死亡率增加,但均低于30个百分点,当去甲肾上腺素诱导浓度为500μmol/L时,虽然在8~16h的处理时间范围内,幼虫变态提高率也较大,均大于18个百分点,但当处理时间超过8h,在16~48h范围内,幼虫死亡率提高明显增大,均大于50个百分点。L-DOPA的适宜诱导浓度为10~50μmol/L,适宜处理时间为8~24h,此时幼虫变态率均提高30个百分点以上,最高可提高79.43个百分点。GABA的诱导作用较弱,最佳诱导浓度随处理时间的不同而有所不同,处理时间为24h和48h时,最佳诱导浓度为0.1μmol/L;处理时间为0.5~16h时,最佳诱导浓度为100μmol/L。 相似文献