首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40369篇
  免费   829篇
  国内免费   499篇
测绘学   1111篇
大气科学   3578篇
地球物理   9607篇
地质学   14316篇
海洋学   2718篇
天文学   8064篇
综合类   178篇
自然地理   2125篇
  2021年   314篇
  2020年   339篇
  2019年   303篇
  2018年   872篇
  2017年   841篇
  2016年   1229篇
  2015年   829篇
  2014年   1143篇
  2013年   1988篇
  2012年   1225篇
  2011年   1411篇
  2010年   1285篇
  2009年   1678篇
  2008年   1402篇
  2007年   1202篇
  2006年   1288篇
  2005年   1087篇
  2004年   1033篇
  2003年   1035篇
  2002年   1014篇
  2001年   907篇
  2000年   934篇
  1999年   757篇
  1998年   779篇
  1997年   776篇
  1996年   683篇
  1995年   662篇
  1994年   620篇
  1993年   527篇
  1992年   500篇
  1991年   487篇
  1990年   507篇
  1989年   481篇
  1988年   444篇
  1987年   537篇
  1986年   515篇
  1985年   536篇
  1984年   635篇
  1983年   646篇
  1982年   589篇
  1981年   573篇
  1980年   526篇
  1979年   513篇
  1978年   530篇
  1977年   466篇
  1976年   414篇
  1975年   432篇
  1974年   464篇
  1973年   460篇
  1972年   292篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Using ion-electron fluid parameters derived from Cassini Plasma Spectrometer (CAPS) observations within Saturn's inner magnetosphere as presented in Sittler et al. [2006a. Cassini observations of Saturn's inner plasmasphere: Saturn orbit insertion results. Planet. Space Sci., 54, 1197-1210], one can estimate the ion total flux tube content, NIONL2, for protons, H+, and water group ions, W+, as a function of radial distance or dipole L shell. In Sittler et al. [2005. Preliminary results on Saturn's inner plasmasphere as observed by Cassini: comparison with Voyager. Geophys. Res. Lett. 32(14), L14S04), it was shown that protons and water group ions dominated the plasmasphere composition. Using the ion-electron fluid parameters as boundary condition for each L shell traversed by the Cassini spacecraft, we self-consistently solve for the ambipolar electric field and the ion distribution along each of those field lines. Temperature anisotropies from Voyager plasma observations are used with (T/T)W+∼5 and (T/T)H+∼2. The radio and plasma wave science (RPWS) electron density observations from previous publications are used to indirectly confirm usage of the above temperature anisotropies for water group ions and protons. In the case of electrons we assume they are isotropic due to their short scattering time scales. When the above is done, our calculation show NIONL2 for H+ and W+ peaking near Dione's L shell with values similar to that found from Voyager plasma observations. We are able to show that water molecules are the dominant source of ions within Saturn's inner magnetosphere. We estimate the ion production rate SION∼1027 ions/s as function of dipole L using NH+, NW+ and the time scale for ion loss due to radial transport τD and ion-electron recombination τREC. The ion production shows localized peaks near the L shells of Tethys, Dione and Rhea, but not Enceladus. We then estimate the neutral production rate, SW, from our ion production rate, SION, and the time scale for loss of neutrals by ionization, τION, and charge exchange, τCH. The estimated source rate for water molecules shows a pronounced peak near Enceladus’ L shell L∼4, with a value SW∼2×1028 mol/s.  相似文献   
992.
Mars Express (MEX) does not carry its own magnetometer which complicates interpretation of ASPERA-3/MEX ion measurements. The direction of the interplanetary magnetic field (IMF) is especially important because it, among other things, determines the direction of the convective electric field and orientation of the cross tail current sheet and tail lobes. In this paper we present a case study to show the properties of the magnetic field near Mars in a quasi-neutral hybrid (QNH) model at the orbits where the Mars Global Surveyor (MGS) has made measurements, present a method to derive the IMF clock angle by comparing fields in a hybrid model and the direction of the magnetic field measured by MGS by deriving the IMF clock angle. We also use H+ ring velocity distribution observations upstream of the bow shock measured by the IMA/ASPERA-3 instrument on board MEX spacecraft. These observations are used to indirectly provide the orientation of the IMF. We use a QNH model (HYB-Mars) where ions are modeled as particles while electrons form a mass-less charge neutralizing fluid. We found that the direct MGS and non-direct IMA observations of the orientation magnetic field vectors in non-crustal magnetic field regions are consistent with the global magnetic field draping pattern predicted by the global model.  相似文献   
993.
We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a “Hot Neptune” nor a “Hot Uranus”-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects.  相似文献   
994.
The Whole Heliosphere Interval (WHI) was an international observing and modeling effort to characterize the 3-D interconnected ??heliophysical?? system during this solar minimum, centered on Carrington Rotation 2068, March 20??C?April 16, 2008. During the latter half of the WHI period, the Sun presented a sunspot-free, deep solar minimum type face. But during the first half of CR 2068 three solar active regions flanked by two opposite-polarity, low-latitude coronal holes were present. These departures from the quiet Sun led to both eruptive activity and solar wind structure. Most of the eruptive activity, i.e., flares, filament eruptions and coronal mass ejections (CMEs), occurred during this first, active half of the interval. We determined the source locations of the CMEs and the type of associated region, such as active region, or quiet sun or active region prominence. To analyze the evolution of the events in the context of the global solar magnetic field and its evolution during the three rotations centered on CR 2068, we plotted the CME source locations onto synoptic maps of the photospheric magnetic field, of the magnetic and chromospheric structure, of the white light corona, and of helioseismological subsurface flows. Most of the CME sources were associated with the three dominant active regions on CR 2068, particularly AR 10989. Most of the other sources on all three CRs appear to have been associated with either isolated filaments or filaments in the north polar crown filament channel. Although calculations of the flux balance and helicity of the surface magnetic features did not clearly identify a dominance of one region over the others, helioseismological subsurface flows beneath these active regions did reveal a pronounced difference among them. These preliminary results suggest that the ??twistedness?? (i.e., vorticity and helicity) of subsurface flows and its temporal variation might be related to the CME productivity of active regions, similar to the relationship between flares and subsurface flows.  相似文献   
995.
Cassini VIMS detected carbon dioxide on the surface of Iapetus during its insertion orbit. We evaluated the CO2 distribution on Iapetus and determined that it is concentrated almost exclusively on Iapetus’ dark material. VIMS spectra show a 4.27-μm feature with an absorption depth of 24%, which, if it were in the form of free ice, requires a layer 31 nm thick. Extrapolating for all dark material on Iapetus, the total observable CO2 would be 2.3 × 108 kg.Previous studies note that free CO2 is unstable at 10 AU over geologic timescales. Carbon dioxide could, however, be stable if trapped or complexed, such as in inclusions or clathrates. While complexed CO2 has a lower thermal volatility, loss due to photodissociation by UV radiation and gravitational escape would occur at a rate of 2.6 × 107 kg year−1. Thus, Iapetus’ entire inventory of surface CO2 could be lost within a few decades.The high loss/destruction rate of CO2 requires an active source. We conducted experiments that generated CO2 by UV radiation of simulated icy regolith under Iapetus-like conditions. The simulated regolith was created by flash-freezing degassed water, crushing it into sub-millimeter sized particles, and then mixing it with isotopically labeled amorphous carbon (13C) dust. These samples were placed in a vacuum chamber and cooled to temperatures between 50 K and 160 K. The samples were irradiated with UV light, and the products were measured using a mass spectrometer, from which we measured 13CO2 production at a rate of 2.0 × 1012 mol s−1. Extrapolating to Iapetus and adjusting for the solar UV intensity and Iapetus’ surface area, we calculated that CO2 production for the entire surface would be 1.1 × 107 kg year−1, which is only a factor of two less than the loss rate. As such, UV photochemical generation of CO2 is a plausible source of the detected CO2.  相似文献   
996.
More than 490 elliptical aerobraking and science phasing orbits made by Mars Global Surveyor (MGS) in 1997 and 1998 provide unprecedented coverage of the solar wind in the vicinity of the orbits of the martian moons Phobos and Deimos. We have performed a comprehensive survey of magnetic field perturbations in the solar wind to search for possible signatures of solar wind interaction with dust or gas escaping from the moons. A total of 1246 solar wind disturbance events were identified and their distribution was examined relative to Phobos, the Phobos orbit, and the Deimos orbit. We find that the spatial distribution of solar wind perturbations does not increase near or downstream of Phobos, Phobos’ orbit, or Deimos’ orbit, which would have been expected if there is significant outgassing or dust escape from the martian moons. Of the 1246 magnetic field perturbation events found in the MGS data set, 11 events were found within 2000 km of the Phobos orbit, while three events were found within 2000 km of the Deimos orbit. These events were analyzed in detail and found to likely have other causes than outgassing/dust escape from the martian moons. Thus we conclude that the amount of gas/dust escaping the martian moons is not significant enough to induce detectable magnetic field perturbations in the solar wind. In essence we have not found any clear evidence in the MGS magnetic field data for outgassing or dust escape from the martian moons.  相似文献   
997.
We present the results of modelling the subgiant star β Hydri using seismic observational constraints. We have computed several grids of stellar evolutionary tracks using the Aarhus STellar Evolution Code (ASTEC, Christensen-Dalsgaard in Astrophys. Space Sci. 316:13, 2008a), with and without helium diffusion and settling. For those models on each track that are located at the observationally determined position of β Hydri in the Hertzsprung-Russell (HR) diagram, we have calculated the oscillation frequencies using the Aarhus adiabatic pulsation package (ADIPLS, Christensen-Dalsgaard in Astrophys. Space Sci. 316:113, 2008b). Applying the near-surface corrections to the calculated frequencies using the empirical law presented by Kjeldsen et al. (Astrophys. J. 683:L175, 2008), we have compared the corrected model frequencies with the observed frequencies of the star. We show that after correcting the frequencies for the near-surface effects, we have a fairly good fit for both l=0 and l=2 frequencies. We also have good agreement between the observed and calculated l=1 mode frequencies, although there is room for improvement in order to fit all the observed mixed modes simultaneously.  相似文献   
998.
Z. Li  F. S. Wei  X. S. Feng  X. H. Zhao 《Solar physics》2010,263(1-2):263-273
Using 141 CME-interplanetary shock (CME-IPS) events and foF2 from eight ionosonde stations from January 2000 to September 2005, from the statistical results we find that there is a “same side?–?opposite side effect” in ionospheric negative storms, i.e., a large portion of ionospheric negative disturbances are induced by the same-side events (referring to the CMEs whose source located on the same side of the heliospheric current sheet (HCS) as the Earth), while only a small portion is associated with the opposite-side events (the CMEs source located on the opposite side of the HCS as the Earth); the ratio is 128 vs. 46, and it reaches 41 vs. 14 for the intense ionospheric negative storms. In addition, the ionospheric negative storms associated with the same-side events are often more intense. A comparison of the same-side event (4 April 2000) and the opposite-side event (2 April 2001) shows that the intensity of the ionospheric negative storm caused by the same-side event is higher than that by the opposite-side event, although their initial conditions are quite similar. Our preliminary results show that the HCS has an “impeding” effect to CME-IPS, which results in a shortage of energy injection in the auroral zone and restraining the development of ionospheric negative perturbations.  相似文献   
999.
We describe the public ESO near-IR variability survey (VVV) scanning the Milky Way bulge and an adjacent section of the mid-plane where star formation activity is high. The survey will take 1929 h of observations with the 4-m VISTA telescope during 5 years (2010–2014), covering ~109 point sources across an area of 520 deg2, including 33 known globular clusters and ~350 open clusters. The final product will be a deep near-IR atlas in five passbands (0.9–2.5 μm) and a catalogue of more than 106 variable point sources. Unlike single-epoch surveys that, in most cases, only produce 2-D maps, the VVV variable star survey will enable the construction of a 3-D map of the surveyed region using well-understood distance indicators such as RR Lyrae stars, and Cepheids. It will yield important information on the ages of the populations. The observations will be combined with data from MACHO, OGLE, EROS, VST, Spitzer, HST, Chandra, INTEGRAL, WISE, Fermi LAT, XMM-Newton, GAIA and ALMA for a complete understanding of the variable sources in the inner Milky Way. This public survey will provide data available to the whole community and therefore will enable further studies of the history of the Milky Way, its globular cluster evolution, and the population census of the Galactic Bulge and center, as well as the investigations of the star forming regions in the disk. The combined variable star catalogues will have important implications for theoretical investigations of pulsation properties of stars.  相似文献   
1000.
The atmospheric mass density of the upper atmosphere from the spherical Starlette satellite’s Precise Orbit Determination is first derived with Satellite Laser Ranging measurements at 815 to 1115 km during strong solar and geomagnetic activities. Starlette’s orbit is determined using the improved orbit determination techniques combining optimum parameters with a precise empirical drag application to a gravity field. MSIS-86 and NRLMSISE-00 atmospheric density models are compared with the Starlette drag-derived atmospheric density of the upper atmosphere. It is found that the variation in the Starlette’s drag coefficient above 800 km corresponds well with the level of geomagnetic activity. This represents that the satellite orbit is mainly perturbed by the Joule heating from geomagnetic activity at the upper atmosphere. This result concludes that MSIS empirical models strongly underestimate the mass density of the upper atmosphere as compared to the Starlette drag-derived atmospheric density during the geomagnetic storms. We suggest that the atmospheric density models should be analyzed with higher altitude acceleration data for a better understanding of long-term solar and geomagnetic effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号