首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   1篇
大气科学   9篇
地球物理   12篇
地质学   2篇
海洋学   9篇
天文学   17篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2015年   2篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   5篇
  2009年   2篇
  2008年   2篇
  2007年   7篇
  2006年   4篇
  2004年   1篇
  2003年   3篇
排序方式: 共有49条查询结果,搜索用时 31 毫秒
41.
Using a magnetic dynamo model, suggested by Kazantsev (J. Exp. Theor. Phys. 1968, vol. 26, p. 1031), we study the small-scale helicity generation in a turbulent electrically conducting fluid. We obtain the asymptotic dependencies of dynamo growth rate and magnetic correlation functions on magnetic Reynolds numbers. Special attention is devoted to the comparison of a longitudinal correlation function and a function of magnetic helicity for various conditions of asymmetric turbulent flows. We compare the analytical solutions on small scales with numerical results, calculated by an iterative algorithm on non-uniform grids. We show that the exponential growth of current helicity is simultaneous with the magnetic energy for Reynolds numbers larger than some critical value and estimate this value for various types of asymmetry.  相似文献   
42.
Water Resources - Specific methods are proposed to assimilate the results of the “historical” experiments on 28 climate models. The results of the analysis confirm the hypothesis...  相似文献   
43.
Geomagnetism and Aeronomy - The method of path integrals is used to average the magnetic-induction equation written for the vector potential over the velocity field. This approach avoids the...  相似文献   
44.
Solar System Research - The article presents the prognostic capabilities of the SOCOL global climate model. A correction of the trajectory is proposed by supplementing the algorithms of the nominal...  相似文献   
45.
Izvestiya, Atmospheric and Oceanic Physics - We present the results of applying the Lagrangian methods to study the fine dynamic structure of the stratospheric polar vortex in the...  相似文献   
46.
47.
In 2001–2003, 45 flares of hard X ray (HXR) and gamma ray radiation, identified with a particular active region (AR) that produced each event, were recorded during the experiments onboard the Russian Solar Observatory CORONAS-F using the SONG (solar neutrons and gamma ray quanta) instrument. The solar corona structure and dynamics above these ARs is studied on the basis of the microwave observations with two Russian radio telescopes RATAN-600 and Siberian Solar Radio Telescope (SSRT). The results are illustrated using the active region NOAA 9601 and flare of September 5, 2001 (~ 1430 UT) as an example. The flare is interesting because the energy of its gamma radiation exceeded 1 MeV, while its power was only M6.0 in soft X rays. Such a combination of the event characteristics is not too frequent, which indicates that the spectrum of the studied event was rather hard. The type of the source of microwave radiation above NOAA 9601 has been determined. Some properties of this-type sources of a diagnostic value for detecting ARs capable of producing HXR and gamma radiation are indicated.  相似文献   
48.
Ozone evolution and diabatic descent in the Arctic polar vortex in winter 1995/1996 was studied with a newly developed diabatic trajectory–chemistry model (DTCM). To study the chemical and dynamic evolution of the species in the polar vortex, 400 diabatic trajectories were calculated in the vortex core and edge region by using three-dimensional (3-D) wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The averaged diabatic descending motion and ozone behavior were obtained for particles started from the core and from the edge region of the vortex. The difference in ozone-loss rates as well as the difference in descending rates between the vortex core and the vortex-edge region was not statistically significant. The average cumulative ozone loss of 65 ± 16% in the vortex core obtained from the model calculations was consistent with the estimates obtained with a different method (Match experiment). The model results for the vortex core were compared with those obtained using trajectories with the vertical winds calculated on the basis of radiative cooling rates as used by the SLIMCAT 3-D chemical transport model. Although the trajectories based on cooling rates exhibited lower descending rates than those based on 3-D analyzed wind data, the ozone behavior was similar for both types of trajectory. Ozonesonde data from two stations (Ny-Alesund in the vortex core and Yakutsk in the vortex edge) were compared with the model results. For Lagrangian estimation of the ozone loss at these stations, the descending rates obtained by the diabatic trajectory calculations were used. Good agreements were obtained between the model results and observations for both the vortex core and edge region. These results suggest that strong ozone depletion occurred not only in the core, but also in the edge region of the vortex, and that air masses from the mid-latitudes did not appreciably affect the degree of ozone depletion in this winter–spring period. The sensitivity of the model to different descending rates and to the presence of large nitric acid trihydrate (NAT) particles was also examined.  相似文献   
49.
Abstract

Regular ground-based measurements of total ozone are available over the full Russian territory using M-124 filter ozonometers, Brewer spectrophotometers, and Système d'Analyse par Observation Zénithale (SAOZ) spectrometers in the Arctic region where these observations are essential for evaluating ozone loss in winter. Daily measurements are performed by three Brewer spectrophotometers; these are located in Kislovodsk (43.7°N, 42.7°E), Obninsk (55.1°N, 36.6°E), and Tomsk (56.5°N, 85.1°E). Two SAOZ spectrometers are deployed at the Arctic Circle in Salekhard (66.5°N, 66.7°E) and Zhigansk (66.8°N, 123.4°E). In addition, regular winter–spring ozonesonde soundings are carried out in Salekhard. Altogether, they have provided the unique measurements over the eastern Arctic required for characterizing ozone loss during each winter and will also monitor the anticipated ozone recovery following the reduction of chlorine and bromine ozone-depleting substances in the atmosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号