首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   7篇
测绘学   2篇
大气科学   4篇
地球物理   33篇
地质学   38篇
海洋学   7篇
天文学   7篇
综合类   1篇
自然地理   3篇
  2022年   1篇
  2021年   3篇
  2020年   8篇
  2019年   5篇
  2018年   9篇
  2017年   5篇
  2016年   5篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   4篇
  2011年   6篇
  2010年   6篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   5篇
  2005年   1篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1997年   2篇
  1992年   1篇
  1990年   2篇
  1977年   1篇
排序方式: 共有95条查询结果,搜索用时 125 毫秒
61.
The primary motivation for the vehicle replacement schemes that were implemented in many countries was to encourage the purchase of new cars. The basic assumption of these schemes was that these acquisitions would benefit both the economy and the environment as older and less fuel-efficient cars were scrapped and replaced with more fuel-efficient models. In this article, we present a new environmental impact assessment method for assessing the effectiveness of scrappage schemes for reducing CO2 emissions taking into account the rebound effect, driving behavior for older versus new cars and entire lifecycle emissions for during the manufacturing processes of new cars. The assessment of the Japanese scrappage scheme shows that CO2 emissions would only decrease if users of the scheme retained their new gasoline passenger vehicles for at least 4.7 years. When vehicle replacements were restricted to hybrid cars, the reduction in CO2 achieved by the scheme would be 6–8.5 times higher than the emissions resulting from a scheme involving standard, gasoline passenger vehicles. Cost–benefit analysis, based on the emission reduction potential, showed that the scheme was very costly. Sensitivity analysis showed that the Japanese government failed to determine the optimum, or target, car age for scrapping old cars in the scheme. Specifically, scrapping cars aged 13 years and over did not maximize the environmental benefits of the scheme. Consequently, modifying this policy to include a reduction in new car subsidies, focused funding for fuel-efficient cars, and modifying the target car age, would increase environmental benefits.  相似文献   
62.
63.
The phase and melting relations of the C-saturated C–Mg–Fe–Si–O system were investigated at high pressure and temperature to understand the role of carbon in the structure of the Earth, terrestrial planets, and carbon-enriched extraterrestrial planets. The phase relations were studied using two types of experiments at 4 GPa: analyses of recovered samples and in situ X-ray diffractions. Our experiments revealed that the composition of metallic iron melts changes from a C-rich composition with up to about 5 wt.% C under oxidizing conditions (ΔIW = ?1.7 to ?1.2, where ΔIW is the deviation of the oxygen fugacity (fO2) from an iron-wüstite (IW) buffer) to a C-depleted composition with 21 wt.% Si under reducing conditions (ΔIW < ?3.3) at 4 GPa and 1,873 K. SiC grains also coexisted with the Fe–Si melt under the most reducing conditions. The solubility of C in liquid Fe increased with increasing fO2, whereas the solubility of Si decreased with increasing fO2. The carbon-bearing phases were graphite, Fe3C, SiC, and Fe alloy melt (Fe–C or Fe–Si–C melts) under the redox conditions applied at 4 GPa, but carbonate was not observed under our experimental conditions. The phase relations observed in this study can be applicable to the Earth and other planets. In hypothetical reducing carbon planets (ΔIW < ?6.2), graphite/diamond and/or SiC exist in the mantle, whereas the core would be an Fe–Si alloy containing very small amount of C even in the carbon-enriched planets. The mutually exclusive nature of C and Si may be important also for considering the light elements of the Earth’s core.  相似文献   
64.
Abstract– Exothermic reactions during the annealing of laboratory synthesized amorphous magnesium‐bearing silicate particles used as grain analogs of cosmic dust were detected by differential scanning calorimetry (DSC) in air. With infrared spectroscopy and transmission electron microscopy, we show that cosmic dust could possibly undergo fusion to larger particles, with oxidation of magnesium silicide and crystallization of forsterite as exothermic reactions in the early solar system. The reactions begin at approximately 425, approximately 625, and approximately 1000 K, respectively, and the reaction energies (enthalpies) are at least 727, 4151, and 160.22 J g−1, respectively. During the crystallization of forsterite particles, the spectral evolution of the 10 μm feature from amorphous to crystalline was observed to begin at lower temperature than the crystallization temperature of 1003 K. During spectral evolution at lower temperature, nucleation and/or the formation of nanocrystallites of forsterite at the surface of the grain analogs was observed.  相似文献   
65.
We describe the mode of occurrence and geochemical characteristics of basalts, in the Khangai–Khentei belt in Mongolia, overlain by Middle Paleozoic radiolarian chert in an extensive accretionary complex. These basalts are greatly enriched in K, Ti, Fe, P, Rb, Ba, Th, and Nb in comparison to the composition of the mid‐ocean ridge basalts, indicative of within‐plate alkaline type. Ti/Y vs Nb/Y and MnO/TiO2/P2O5 ratios of the basalts also suggest within‐plate affinities. Considering the geochemical characteristics as well as the conformable relationship with the overlying radiolarian chert, the alkaline basalts were clearly not continental but formed a pelagic oceanic island. The mode of occurrence and geochemistry of the basalts show that the alkaline basaltic volcanic activity had taken place to form an oceanic island in the Paleozoic pelagic region sufficiently far from continents to allow radiolarian ooze accumulation.  相似文献   
66.
Thermal waters in hydrothermal ponds, bathing pools and the brines of geothermal electric power plants commonly have a characteristic blue color. Although many researchers have assumed that the blue color is due to a colloidal suspension and/or absorption by dissolved ferrous iron or by water itself, there has been no specific effort to identify the physical nature of this phenomenon. We have tested, in synthetic and natural solutions, whether aqueous colloidal silica is responsible for the blue color. Aqueous colloidal silica is formed by silica polymerization in thermal waters of the neutral-chloride type which contain initially monomeric silica in concentrations up to three times above the solubilities of amorphous silica. The hue of the blue thermal waters in the pools tested agrees with that of a synthesized colloidal silica solution. Grain-size analyses of aqueous colloidal silica in the blue-colored thermal waters demonstrate that the color is caused by Rayleigh scattering from aqueous colloidal silica particles with diameters (0.1–0.45 μm) smaller than the wavelengths of visible radiation.  相似文献   
67.
Phase transitions in MgGeO3 and ZnGeO3 were examined up to 26 GPa and 2,073 K to determine ilmenite–perovskite transition boundaries. In both systems, the perovskite phases were converted to lithium niobate structure on release of pressure. The ilmenite–perovskite boundaries have negative slopes and are expressed as P(GPa)=38.4–0.0082T(K) and P(GPa)=27.4−0.0032T(K), respectively, for MgGeO3 and ZnGeO3. Enthalpies of SrGeO3 polymorphs were measured by high-temperature calorimetry. The enthalpies of SrGeO3 pseudowollasonite–walstromite and walstromite–perovskite transitions at 298 K were determined to be 6.0±8.6 and 48.9±5.8 kJ/mol, respectively. The calculated transition boundaries of SrGeO3, using the measured enthalpy data, were consistent with the boundaries determined by previous high-pressure experiments. Enthalpy of formation (ΔH f°) of SrGeO3 perovskite from the constituent oxides at 298 K was determined to be −73.6±5.6 kJ/mol by calorimetric measurements. Thermodynamic analysis of the ilmenite–perovskite transition boundaries in MgGeO3 and ZnGeO3 and the boundary of formation of SrSiO3 perovskite provided transition enthalpies that were used to estimate enthalpies of formation of the perovskites. The ΔH f° of MgGeO3, ZnGeO3 and SrSiO3 perovskites from constituent oxides were 10.2±4.5, 33.8±7.2 and −3.0±2.2 kJ/mol, respectively. The present data on enthalpies of formation of the above high-pressure perovskites were combined with published data for A2+B4+O3 perovskites stable at both atmospheric and high pressures to explore the relationship between ΔH f° and ionic radii of eightfold coordinated A2+ (R A) and sixfold coordinated B4+ (R B) cations. The results show that enthalpy of formation of A2+B4+O3 perovskite increases with decreasing R A and R B. The relationship between the enthalpy of formation and tolerance factor ( R o: O2− radius) is not straightforward; however, a linear relationship was found between the enthalpy of formation and the sum of squares of deviations of A2+ and B4+ radii from ideal sizes in the perovskite structure. A diagram showing enthalpy of formation of perovskite as a function of A2+ and B4+ radii indicates a systematic change with equienthalpy curves. These relationships of ΔH f° with R A and R B can be used to estimate enthalpies of formation of perovskites, which have not yet been synthesized.  相似文献   
68.
A semi-empirical approach using fore- or after-shockrecords as Green's functions is applicable to thesimulation of strong ground motion, however suchrecords are obviously not available for predictionpurposes. Thus we have predicted ground motion fora hypothetical large earthquake from other minorevents by adopting a distance correction based ongeometrical spreading. Another difficulty inprediction is fault modeling. Surface traces weresimplified as fault models 27, 46, 55, and 77 km inlength. Further, the actual fault rupture may beinhomogeneous, so an asperity distribution isassumed. This asperity model assumes thatdislocation and stress drop are double than theaverage values. Although, the near field term isneglected in our simulation, no significantdifference was seen in the motions estimated byindividual models for periods up to 2.0 seconds. This indicates that the dependence of source size issmall for strong motion, perhaps as a result of therandom summation of high-frequency phases.  相似文献   
69.
Sentinel-1A C-SAR and Sentinel-2A MultiSpectral Instrument (MSI) provide data applicable to the remote identification of crop type. In this study, six crop types (beans, beetroot, grass, maize, potato, and winter wheat) were identified using five C-SAR images and one MSI image acquired during the 2016 growing season. To assess the potential for accurate crop classification with existing supervised learning models, the four different approaches namely kernel-based extreme learning machine (KELM), multilayer feedforward neural networks, random forests, and support vector machine were compared. Algorithm hyperparameters were tuned using Bayesian optimization. Overall, KELM yielded the highest performance, achieving an overall classification accuracy of 96.8%. Evaluation of the sensitivity of classification models and relative importance of data types using data-based sensitivity analysis showed that the set of VV polarization data acquired on 24 July (Sentinel-1A) and band 4 data (Sentinel-2A) had the greatest potential for use in crop classification.  相似文献   
70.
ZnSiO3 clinopyroxene stable above 3 GPa transforms to ilmenite at 10–12 GPa, which further decomposes into ZnO (rock salt) plus stishovite at 20–30 GPa. The enthalpy of the clinopyroxene-ilmenite transition was measured by high-temperature solution calorimetry, giving ΔH0=51.71 ±3.18 kJ/mol at 298 K. The heat capacities of clinopyroxene and ilmenite were measured by differential scanning calorimetry at 343–733 and 343–633 K, respectively. The C p of ilmenite is 3–5% smaller than that of clinopyroxene. The entropy of transition was calculated using the measured enthalpy and the free energy calculated from the phase equilibrium data. The enthalpy, entropy and volume changes of the pyroxene-ilmenite transition in ZnSiO3 are similar in magnitude to those in MgSiO3. The present thermochemical data are used to calculate the phase boundary of the ZnSiO3 clinopyroxene-ilmenite transition. The calculated boundary,
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号