首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   17篇
  国内免费   2篇
测绘学   6篇
大气科学   16篇
地球物理   79篇
地质学   79篇
海洋学   32篇
天文学   58篇
综合类   4篇
自然地理   19篇
  2024年   1篇
  2022年   1篇
  2021年   6篇
  2020年   9篇
  2019年   7篇
  2018年   13篇
  2017年   13篇
  2016年   9篇
  2015年   7篇
  2014年   9篇
  2013年   12篇
  2012年   10篇
  2011年   15篇
  2010年   20篇
  2009年   18篇
  2008年   17篇
  2007年   17篇
  2006年   14篇
  2005年   7篇
  2004年   6篇
  2003年   5篇
  2002年   12篇
  2001年   8篇
  2000年   8篇
  1999年   9篇
  1998年   5篇
  1997年   4篇
  1995年   2篇
  1994年   7篇
  1992年   2篇
  1990年   1篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   5篇
  1977年   1篇
  1971年   1篇
  1955年   1篇
排序方式: 共有293条查询结果,搜索用时 0 毫秒
61.
Wavenumber spectra of the martian atmosphere covering zonal wavenumbers s=1-6 were obtained as a function of latitude and season for the first time from the temperatures measured by the Thermal Emission Spectrometer onboard the Mars Global Surveyor. The stationary component tends to peak at s=2, where the martian topography has large amplitude, and drops rapidly at higher wavenumbers. The transient component in the middle and high latitudes tends to peak at s=1, which is lower than the most unstable wavenumber based on linear theories, and exhibits spectral slopes much flatter than the stationary component. In the equatorial region, the spectra of the transient component are almost flat, indicating that the organization of large-scale structures is less efficient in this region. The spectral shapes are similar between the 0.5 and 2.2 hPa surfaces, except that the slopes are slightly steeper at 0.5 than at 2.2 hPa, probably due to selective vertical transmission at low wavenumbers. The seasonal variation is relatively large in the middle and high latitudes, where the maximum power occurs in winter and the minimum occurs in summer, with an exception that the transient component is maximum in spring in the southern hemisphere. Intensification of s=1 transient waves is observed around the period of the initiation of global dust storms.  相似文献   
62.
We developed a seismometer system for a hard landing “penetrator” probe in the course of the former Japanese LUNAR-A project to deploy new seismic stations on the Moon. The penetrator seismometer system (PSS) consists of two short-period sensor components, a two-axis gimbal mechanism for orientation, and measurement electronics. To carry out seismic observations on the Moon using the penetrator, the seismometer system has to function properly in a lunar environment after a hard landing (impact acceleration of about 8000 G), and requires a signal-to-noise ratio to detect lunar seismic events. We evaluated whether the PSS could satisfactorily observe seismic events on the Moon by investigating the frequency response, noise level, and response to ground motion of our instrument in a simulated lunar environment after a simulated impact test. Our results indicate that the newly developed seismometer system can function properly after impact and is sensitive enough to detect seismic events on the Moon. Using this PSS, new seismic data from the Moon can be obtained during future lunar missions.  相似文献   
63.
Mass depletion of bodies through successive collisional disruptions (i.e., collision cascade) is one of the most important processes in the studies of the asteroids belt, the Edgeworth-Kuiper belt, debris disks, and planetary formation. The collisional disruption is divided into two types, i.e., catastrophic disruption and cratering. Although some studies of the collision cascades neglected the effect of cratering, it is unclear which type of disruption makes a dominant contribution to the collision cascades. In the present study, we construct a simple outcome model describing both catastrophic disruption and cratering, which has some parameters characterizing the total ejecta mass, the mass of the largest fragment, and the power-law exponent of the size distribution of fragments. Using this simple outcome model with parameters, we examine the model dependence of the mass depletion time in collision cascades for neglect of coalescence of colliding bodies due to high collisional velocities. We find the cratering collisions are much more effective in collision cascades than collisions with catastrophic disruption in a wide region of the model parameters. It is also found that the mass depletion time in collision cascades is mainly governed by the total ejecta mass and almost insensitive to the mass of the largest fragment and the power-law exponent of fragments for a realistic parameter region. The total ejecta mass is usually determined by the ratio of the impact energy divided by the target mass (i.e. Q-value) to its threshold value for catastrophic disruption, as well as in our simple model. We derive a mass depletion time in collision cascades, which is determined by of the high-mass end of collision cascades. The mass depletion time derived with our model would be applicable to debris disks and planetary formation.  相似文献   
64.
Abstract— We report the first production of non‐mass‐dependently fractionated silicate smokes from the gas phase at room temperature from a stream of silane and/or pentacarbonyl iron in a molecular hydrogen (or helium) flow mixed with molecular oxygen (or nitrous oxide). The smokes were formed at the Goddard Space Flight Center (GSFC) at total pressures of just under 100 Torr in an electrical discharge powered by a Tesla coil, were collected from the surfaces of the copper electrodes after each experiment and sent to the University of California at San Diego (UCSD) for oxygen isotopic analysis. Transmission electron microscopy studies of the smokes show that they grew in the gas phase rather than on the surfaces of the electrodes. We hypothesize at least two types of fractionation processes occurred during formation of the solids: a mass‐dependent process that made isotopically lighter oxides compared to our initial oxygen gas composition followed by a mass‐independent process that produced oxides enriched in 17O and 18O. The maximum Δ17O observed is + 4.7‰ for an iron oxide produced in flowing hydrogen, using O2 as the oxidant. More typical displacements are 1–2‰ above the equilibrium fractionation line. The chemical reaction mechanisms that yield these smokes are still under investigation.  相似文献   
65.
Abstract The temporal variation of seismic velocity near the Nojima Fault, which ruptured during the 1995 Kobe earthquake (Hyogo-ken Nanbu earthquake), was detected using an accurately controlled routine-operated seismic source (ACROSS). The source generates elastic waves by a centrifugal force of an eccentric mass rotating around an axis. The mass is driven with an AC servomotor whose angular position is accurately controlled with reference to a very accurate global positioning system (GPS) clock. The error of the mass' position is less than 0.002 radian and does not accumulate. As a result, the source generates sinusoidal waves of very narrow spectral peaks enabling their detection with an excellent signal-to-noise ratio. Although the stability of the rotation is quite excellent, a large daily variation was found, which seems to be caused by changes in atmospheric temperature. The daily variation was 10% in amplitude and 0.1 radian in phase of the signal observed at the 800 m borehole seismometer. A significant variation was found to be due to that of coupling between the rotational source and the foundation made of reinforced concrete in which the source was situated. In order to make a correction on the signal of the 800 m borehole seismometer, the vibration of the foundation was measured and modeled assuming a rigid body movement. The correction successfully reduced the daily variation by approximately 90%, resulting in a variation of 1% in amplitude and 0.01 radian in phase. The phase variation of 0.01 radian corresponds to 100 μs and less than 0.1% in velocity over 1000 m between the source and the receiver.  相似文献   
66.
Phase and group velocities and Q of mantle Love and Rayleigh waves from the 1963 Kurile Islands earthquake (Mw = 8.5) were determined over 37 great circle paths by a time variable filtering technique, in a period range 100–500 s for the fundamental modes and 100–275 s for the first higher modes. The preliminary reference Earth model (PREM) explains reasonably well the average dispersion results for the fundamental Love and Rayleigh waves. There exists a small, but significant inconsistency between the observation and the model for the first higher Love and Rayleigh waves. The Q structure of PREM is inconsistent with the observation for the fundamental Love waves, but explains other observations reasonably well. The dispersion of each mode shows a clear azimuthal dependence from which the four azimuthal windows were established. The phase and group velocity measurements for each window were, in general, shown to be mutually consistent. The azimuthal variations are largest for the first higher Rayleigh waves, indicating strong lateral heterogeneity in the structure of the low velocity zone. The first of the four windows is characterized by the largest fraction of Precambrian shields and the second window by the largest fraction of normal oceans. A comparison of these two windows may give some insight into deep lateral heterogeneity between continents and oceans. The observed phase and group velocities of the first window are systematically higher than those of the second window for the fundamental Love and Rayleigh waves at periods up to 400 s, and for the first higher Love and Rayleigh waves up to 175 s. Their differences are greatest for the first higher Rayleigh waves and least for the fundamental Rayleigh waves. Although the fundamental Rayleigh waves show the least velocity differences, their persistence up to a period of longer than 300 s is in striking contrast with some of the pure path phase velocities derived earlier for continents and oceans. A set of models for continents and oceans. PEM-C and PEM-O are not consistent with our observation. The third azimuthal window is characterized by trench-marginal seas and the fourth window by mountainous areas, typically the Asian high plateaus from northern China to the Middle East through Tibet. A comparison of these two windows gives some information about deep structural differences between subduction zones and continental collision zones, both belonging to plate convergence zones. For the fundamental and the first higher Love waves, the phase and group velocities for the third window are markedly low, whereas those for the fourth window are somewhat comparable to those for the second window. Slow Rayleigh waves are evident for two windows, with the fourth window apparently being the slowest for the fundamental Rayleigh above 200 s and for the first higher Rayleigh. For the fundamental Rayleigh waves, the third window is very slow below 200 s, but becomes progressively fast as the period increases and tends to be the fastest window around 400 s, suggesting a deep seated high velocity anomaly beneath trench-marginal seas. The dispersion characteristics of the fourth window indicate a thick high velocity lid with an extensive low velocity zone beneath it. The shield-like lithosphere, coupled with an extensive low velocity zone, may be a characteristic feature of continental collision zones. The particle motion of the fundamental Love waves was found not to be purely transverse to a great-circle connecting the epicenter to a station. The departure from the purely transverse motion is systematic among different periods, different G arrivals (G2, G3,…) and different stations, which may be interpreted as being due to lateral refraction.  相似文献   
67.
68.
Biogenic amino acids, taken as representative of organic matter, were analyzed to determine the apparent degradation rate constant in boreal terrestrial sediment. Age determination using 14C dating gave two rate constants: the initial degradation rate constant for glycine (kGLY 1), the simplest amino acid, was 1.5 × 10−3 yr−1 (r = 0.97) until about 2200 yr BP. After the inflection point, the rate constant kGLY 2 was 9.1 × 10−5 yr−1 (r = 0.73). The degradation of amino acids in the labile organic matter in the sediment was markedly affected by rapid processes. After the inflection point, the rate constant profiles for sub-surface amino acids were shown to have discontinuous relationships with sediment age. One pattern which emerged in the vertical distribution is that the biogenic amino acid degradation rate constant k was far greater in the labile organic matter phase than that in the refractory organic matter over the past 10,000 years.  相似文献   
69.
To improve the seismic performance of masonry structures, confined masonry that improves the seismic resistance of masonry structures by the confining effect of surrounding bond beams and tie columns is constructed. This study investigated the earthquake resisting behaviour of confined masonry structures that are being studied and constructed in China. The structural system consists of unreinforced block masonry walls with surrounding reinforced concrete bond beams and tie columns. The characteristics of the structure include: (1) damage to blocks is reduced and brittle failure is avoided by the comparatively lower strength of the joint mortar than that of the blocks, (2) the masonry walls and surrounding reinforced concrete bond beams and tie columns are securely jointed by the shear keys of the tie columns. In this study, wall specimens made of concrete blocks were tested under a cyclic lateral load and simulated by a rigid body spring model that models non‐linear behaviour by rigid bodies and boundary springs. The results of studies outline the resisting mechanism, indicating that a rigid body spring model is considered appropriate for analysing this type of structure. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
70.
The six eruption episodes of the 10 ka Pahoka–Mangamate (PM) sequence (see companion paper) occurred over a ?200–400-year period from a 15-km-long zone of multiple vents within the Tongariro Volcanic Centre (TgVC), located at the southern end of the Taupo Volcanic Zone (TVZ). Most TgVC eruptives are plagioclase-dominant pyroxene andesites and dacites, with strongly porphyritic textures indicating their derivation from magmas that ascended slowly and stagnated at shallow depths. In contrast, the PM pyroclastic eruptives show petrographic features (presence of phenocrystic and groundmass hornblende, and the coexistence of olivine and augite without plagioclase during crystallisation of phenocrysts and microphenocrysts) which suggest that their crystallisation occurred at depth. Depths exceeding 8 km are indicated for the dacitic magmas, and >20 km for the andesitic and basaltic andesitic magmas. Other petrographic features (aphyric nature, lack of reaction rims around hornblende, and the common occurrence of skeletal microphenocrystic to groundmass olivine in the andesites and basaltic andesites) suggest the PM magmas ascended rapidly immediately prior to their eruption, without any significant stagnation at shallow depths in the crust. The PM eruptives show three distinct linear trends in many oxide–oxide diagrams, suggesting geochemical division of the six episodes into three chronologically-sequential groups, early, middle and late. Disequilibrium features on a variety of scales (banded pumice, heterogeneous glassy matrix and presence of reversely zoned phenocrysts) suggest that each group contains the mixing products of two end-member magmas. Both of these end-member magmas are clearly different in each of the three groups, showing that the PM magma system was completely renewed at least three times during the eruption sequence. Minor compositional diversity within the eruptives of each group also allows the PM magmas to be distinguished in terms of their source vents. Because petrography suggests that the PM magmas did not stagnate at shallow levels during their ascent, the minor diversity in magmas from different vents indicates that magmas ascended from depth through separate conduits/dikes to erupt at different vents either simultaneously or sequentially. These unique modes of magma transport and eruption support the inferred simultaneous or sequential tapping of small separate magma bodies by regional rifting in the southern Taupo Volcanic Zone during the PM eruption sequence (see companion paper).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号