首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23740篇
  免费   4073篇
  国内免费   4216篇
测绘学   1370篇
大气科学   3326篇
地球物理   6257篇
地质学   11628篇
海洋学   3047篇
天文学   2603篇
综合类   1398篇
自然地理   2400篇
  2024年   110篇
  2023年   300篇
  2022年   958篇
  2021年   1194篇
  2020年   1086篇
  2019年   1353篇
  2018年   1573篇
  2017年   1548篇
  2016年   1609篇
  2015年   1364篇
  2014年   1590篇
  2013年   1734篇
  2012年   1590篇
  2011年   1635篇
  2010年   1495篇
  2009年   1342篇
  2008年   1354篇
  2007年   1284篇
  2006年   1096篇
  2005年   687篇
  2004年   590篇
  2003年   649篇
  2002年   744篇
  2001年   694篇
  2000年   553篇
  1999年   532篇
  1998年   407篇
  1997年   396篇
  1996年   340篇
  1995年   332篇
  1994年   289篇
  1993年   248篇
  1992年   222篇
  1991年   142篇
  1990年   120篇
  1989年   141篇
  1988年   114篇
  1987年   75篇
  1986年   76篇
  1985年   54篇
  1984年   53篇
  1983年   45篇
  1982年   44篇
  1981年   28篇
  1980年   27篇
  1979年   32篇
  1978年   19篇
  1976年   18篇
  1975年   22篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
42.
Chi Yuan  Patrick Cassen 《Icarus》1985,64(3):435-447
The gravitational collapse of molecular clouds or cloud cores is expected to lead to the formation of stars that begin their lives in a state of rapid rotation. It is known that, in at least some specific cases, rapidly rotating, slf-gravitating bodies are subject to instabilities that cause them to assume ellipsoidal shapes. In this paper we investigate the consequences of such instabilities on the angular momentum evolution of a star in the process of formation from a collapsing cloud, and surrounded by a protostellar disk, with a view toward applications to the formation of the Solar System. We use a specific model of star formation to demonstrate the possibility that such a star would become unstable, that the resulting distortion of the star would generate spiral density waves in the circumstellar disk, and that the torque associated with these waves would regulate the angular momentum of the star as it feeds angular momentum to the disk. We conclude that the angular momentum so transported to the disk would not spread the disk to, say, Solar System dimensions, by the action of the spiral density waves alone. However, a viscous disk could effectively extract stellar angular momentum and attain Solar System size. Our results also indicate that viscous disks could feed mass and angular momentum to a growing protostar in such a manner that distortions of the star would occur before gravitational torques could balance the influx of angular momentum. In other situations (in which the viscosity was small), a gap could be cleared between the disk and star.  相似文献   
43.
Image restoration, computerized tomography, and other similar problems are considered as a unified class of stochastic inverse problems. The conventional approach to these problems that proceeds from some integral or functional equations suffers from three main shortcomings: (i) subjectivity, (ii) inability to account for the inner (radiational) noise, and (iii) inability to include the fundamental concept of the natural limit of solution accuracy. A general approach is developed, the Statistical Parameterization of Inverse Problems (SPIPR), that takes into account both the inner and external random noise and gives an explicit form of the above-mentioned natural limit. Applications of the SPIPR to various problems show that the maximum likelihood method as the concrete way to obtain an object estimate has practically limiting efficiency.Two new fields of applications of the SPIPR are outlined along with the image restoration problem: the elimination of blurring due to atmosphere turbulence and reconstruction of an object structure in the computerized tomography. The expressions for the main distribution function in all these problems are found. The corresponding real examples and model cases are considered as well.  相似文献   
44.
Natural and agricultural wetlands are considered to be the major sources of global atmospheric methane (CH4). A one‐dimensional model was developed to simulate methane emission and used to examine the influence of various physical processes on the rate of methane emission. Three processes involved in the methane emission are implemented in the model: production, reoxidation and transport. Three transport pathways were considered: diffusion across water–air or soil–air interfaces, ebullition and diffusion through plants. These pathways are influenced by soil properties, plant growth, water‐table conditions, temperature and external inputs (e.g. fertilizer). The model was used to examine the seasonal variation of the methane emission at a rice field in Hunan, China, which was observed during a field experiment for consecutive (early and late) rice seasons in 1992. The observed seasonal variations of methane emission, and role of plants in transporting methane to the atmosphere, are captured by the model simulation. Further model applications were conducted to simulate effects of fertilizer and water‐level condition on the methane emission. The results indicate that unfermented organic fertilizer produces a higher methane emission rate than mineral fertilizer. The simulations with treatments of a deep‐water covering and constant moisture reduced the methane emission. The rice field study provides a framework for further development of the model towards simulations based on spatially distributed variables (e.g. water table, soil temperature and vegetation) at a regional scale. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
45.
Based on the MASNUM wave-tide-circulation coupled numerical model, the temperature structure along 35°N in the Yellow Sea was simulated and compared with the observations. One of the notable features of the temperature structure along 35°N section is the double cold cores phenomena during spring and summer. The double cold cores refer to the two cold water centers located near 122°E and 125°E from the depth of 30m to bottom. The formation, maintenance and disappearance of the double cold cores are discussed. At least two reasons make the temperature in the center (near 123°E) of the section higher than that near the west and east shores in winter. One reason is that the water there is deeper than the west and east sides so its heat content is higher. The other is invasion of the warm water brought by the Yellow Sea Warm Current (YSWC) during winter. This temperature pattern of the lower layer (from 30m to bottom) is maintained through spring and summer when the upper layer (0 to 30m) is heated and strong thermocline is formed. Large zonal span of the 35°N section (about 600 km) makes the cold cores have more opportunity to survive. The double cold cores phenomena disappears in early autumn when the west cold core vanishes first with the dropping of the thermocline position. Supported by the National Basic Research Program of China (No. G1999043809) and the National Science Foundation of China (No. 49736190).  相似文献   
46.
An analysis of our observations of the Geminga object with the GT-48 ground-based gamma-ray telescope has shown that its very-high-energy gamma-ray flux is modulated with a 59-s period. The 59-s period and its time derivative previously inferred from satellite data have been confirmed. According to our data, the period was 61.94 s in 1997 at MSD=50573. The statistical significance of this result is (1?4.5)×10?4.  相似文献   
47.
介绍了近年来河外H2O超脉泽的主要观测结果。H2O超脉泽通常起源于活动星系核中央的拱核盘。它们主要寄生在 Serfert 2星系或低电离核区。至今为止,已有20个星系探测到H2O超脉泽。脉泽辐射的各向同性光度为10~6000L⊙。所有超脉泽星系显示出核的活动,显然,脉泽是由核活动所产生的射电和X射线光子或激波来抽运的。H2O超脉泽倾向存在于高倾斜度的星系,这使得沿视线上的分子柱密度增高,产生足够大的放大光深。最有可能产生H2O超脉泽辐射的星系应有一个包含着射电源的侧向的分子盘以及一个适当的抽运机制。  相似文献   
48.
About a dozen physical mechanisms and models aspire to explain the negative polarization of light scattered by atmosphereless celestial bodies. This is too large a number for the reliable interpretation of observational data. Through a comparative analysis of the models, our main goal is to answer the question: Does any one model have an advantage over the others? Our analysis is based on new laboratory polarimetric and photometric data as well as on theoretical results. We show that the widely used models due to Hopfield and Wolff cannot realistically explain the phase-angle dependence of the degree of polarization observed at small phase angles. The so-called interference or coherent backscattering mechanism is the most promising model. Models based on that mechanism use well-defined physical parameters to explain both negative polarization and the opposition effect. They are supported by laboratory experiments, particularly those showing enhancement of negative polarization with decreasing particle size down to the wavelength of light. According to the interference mechanism, pronounced negative branches of polarization, like those of C-class asteroids, may indicate a high degree of optical inhomogeneity of light-scattering surfaces at small scales. The mechanism also seems appropriate for treating the negative polarization and opposition effects of cometary dust comae, planetary rings, and the zodiacal light.  相似文献   
49.
50.
Abstract— Carbon isotopic compositions were measured for shock‐produced diamond and shocked graphite formed at peak pressures ranging from 37 to 52 GPa. The δ13C values of diamonds produced in a sealed container were generally lower than that of the initial graphite. The differences in the carbon isotopic composition between initial graphite and shocked graphite/diamond may reflect kinetic isotopic fractionation during the oxidation of the graphite/diamond and/or analytical artifacts possibly induced by impurities in the samples. The pressure effect on the isotopic fractionations between graphite and diamond can be estimated from the δ13C values of impurity‐free diamonds produced using a vented container from which gases, including oxygen, in pore spaces escaped during or after the diamond formation (e.g., 0.039 ± 0.085‰ at a peak pressure of 52 GPa). Any isotopic fractionation induced by shock conversion of graphite to diamond is too small to be detected in natural shock‐induced diamond‐graphite systems related to terrestrial impact cratering processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号