首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   4篇
  国内免费   6篇
测绘学   1篇
大气科学   6篇
地球物理   63篇
地质学   39篇
海洋学   33篇
天文学   8篇
自然地理   7篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   14篇
  2013年   6篇
  2012年   5篇
  2011年   4篇
  2010年   9篇
  2009年   4篇
  2008年   6篇
  2007年   8篇
  2006年   7篇
  2005年   6篇
  2004年   13篇
  2003年   2篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
排序方式: 共有157条查询结果,搜索用时 31 毫秒
91.
We measured the methane flux of a forest canopy throughout a year using a relaxed eddy accumulation (REA) method. This sampling system was carefully validated against heat and CO2 fluxes measured by the eddy covariance method. Although the sampling system was robust, there were large uncertainties in the measured methane fluxes because of the limited precision of the methane gas analyzer. Based on the spectral characteristics of signals from the methane analyzer and the diurnal variations in the standard deviation of the vertical wind velocity, we found the daytime and nighttime precision of half-hourly methane flux measurements to be approximately 1.2 and 0.7?μg?CH4?m?2?s?1, respectively. Additional uncertainties caused by the dilution effect were estimated to affect the accuracy by as much as 0.21?μg?CH4?m?2?s?1 on a half-hourly basis. Diurnal and seasonal variations were observed in the measured fluxes. The biological emission from plant leaves was not observed in our studies, and thus could be negligible at the canopy-scale exchange. The annual methane sink was 835?±?175?mg?CH4?m?2?year?1 (8.35?kg?CH4?ha?1?year?1), which was comparable to the flux range of 379–2,478?mg?CH4?m?2?year?1 previously measured in other Japanese forest soils. This study indicated that the REA method could be a promising technique to measure canopy scale methane fluxes over forests, but further improvement of precision of the analyzer will be required.  相似文献   
92.
Profiles of a total of 23 plagioclase crystals erupted within the 1982–1991 and 1993 flows of the Coaxial segment of the Juan de Fuca ridge, the 1996 flow of the North Gorda ridge, and from the Western Volcanic Zone of the ultra-slow spreading Gakkel Ridge, have been studied for variations in major and trace element concentrations. We derive equilibration times for the relatively rapidly diffusing Sr in mid-ocean ridge basalt (MORB) plagioclase crystals of the order of months to a few years in each case. All crystals preserve diffusive disequilibria of strontium and barium. Crystal residence times at MORB magmatic temperatures are thus significantly shorter, of the order of days to a few months at most, precluding prolonged crystal storage in axial magma chambers and instead pointing to rapid crystal growth (up to ~10−8 cm s−1) and cooling (up to ~1°C h−1) shortly prior to eruption of these samples. Growth of these crystals is therefore inferred to occur almost entirely within oceanic layer 2 during dike injection. Crystals that grew at lower crustal levels or earlier in the differentiation sequence appear to have been excluded from the erupted magmas, as might occur if most of the gabbroic rocks in oceanic layer 3 formed an interlocking crystal framework, with viscosities that are too high to carry earlier formed crystals with the melt. The vertical extent of eruptible, crystal-poor melt lenses within the gabbroic zone is constrained to ~1 m or less by considering the width of local equilibrium growth zones, equilibration times, and crystal settling velocities. This lengthscale is consistent with field evidence from ophiolites. Finally, crystal aggregates within the Gakkel ridge sample studied here are the result of synneusis within the propagating dike during melt ascent.  相似文献   
93.
Metamorphosed volcanic and sedimentary rocks of the Jaglot Group are exposed along the west bank of the Indus River near Thelichi. The structural bottom unit, the Thelichi Formation, is composed of metavolcaniclastic, metavolcanic, metapelitic, and metacalcareous rocks. Bedding planes of the Thelichi Formation trend E–W or NW–SE and dip steeply to the N. The middle unit, Gashu-Confluence Volcanics, is composed of metavolcaniclastic, metavolcanic, and metacalcareous rocks. Bedding planes trend NW–SE and dip moderately to the N. The top unit, the Gilgit Formation, is composed of interlayered metapsammitic and metapelitic rocks. Graded bedding, cross-bedding, and pillow structures are preserved in these metamorphic rocks of the Jaglot Group. Those indicate clastic sedimentary and volcanic origins. There is no major repetition of layers due to folding (so-called “the Jaglot syncline”) as is evidenced by the consistent northward younging of the beds. The three lithological units constitute a north-dipping tectonic stack. The tectonic stack was provably caused by the northward subduction of the back-arc basin under the Asian margin and subsequent collision between the Asia and the Kohistan (the closure of back-arc basin).  相似文献   
94.
使用移动式亚毫米波望远镜(POST)在位于青藏高原海拔3200米的紫金山天文台德令哈射电天文观测站址测量地球大气492GHz频率处天顶方向的不透明度(τ0)的结果.在1999—2000年冬季和2000—2001年冬季的两个观测季节内累计共进行了约870个小时的测量,取得了25842组τ0的有效数据.对数据的统计表明,观测季节内τ0值主要分布在1.5—3.0之间.观测时段内大气不透明度τ0≤1.0的时间比例约占3%.在给出实测资料的基础上,将所测量的亚毫米波不透明度与国际现有亚毫米波台址的不透明度进行了初步比较.  相似文献   
95.
Abstract The central part of the Kokchetav Massif is exposed in the Chaglinka–Kulet area, northern Kazakhstan. The ultrahigh-pressure–high-pressure (UHP–HP) metamorphic belt in this area is composed of four subhorizontal lithological units (Unit I–IV) metamorphosed under different pressure–temperature (P–T) conditions. The coesite- and diamond-bearing Unit II, which consists mainly of whiteschist and eclogite blocks, is tectonically sandwiched between the amphibolite-dominant Unit I on the bottom and the orthogneiss-dominant Unit III on the top. Total combined thickness of these units is less than 2 km. The rocks of the UHP–HP metamorphic belt are affected by at least four deformational events post-dating peak metamorphism: (i) The earliest penetrative deformation is characterized by non-coaxial ductile flow in a NW–SE direction. The shear sense indicators in oriented samples from Unit I provide consistent top-to-the-northwest motions and those from Unit III provide top-to-the-southeast, south or south-west motions; (ii) Upright folds with subhorizontal enveloping surface refold earlier foliations including shear-indicators throughout the metamorphic belt; (iii) The third stage of deformation is denoted by large-scale bending around a subvertical axis; and (iv) Late localized fault (or shear) zones cut all earlier structures. The fault zones have subvertical shear planes and their displacements are essentially strike-slip in manner. The subhorizontal structure and opposite shear directions between Unit I and Unit III during the earlier deformation stage suggest north-westward extrusion of UHP Unit II.  相似文献   
96.
A sudden acceleration of the Kuroshio jet appears off Cape Shionomisaki in the high-resolution (horizontal resolution of 1/36°) JCOPE 2 ocean reanalysis data. Using this dataset, we investigated the structure of the Kuroshio acceleration. The increase in the velocity of the current is accompanied by a downstream flow separation from the coast and an outcrop of cold temperature inshore. The acceleration of Kuroshio appears when it takes a near-shore path. Cape Shionomisaki amplifies the responses to the Kuroshio flow by creating the zonal velocity acceleration toward the downstream region when the Kuroshio flows closer to the coast. The Kuroshio acceleration coincided with the topographic ridge on the continental shelf near Cape Shionomisaki. This relation suggests that the dynamics of the acceleration is linked to the topographic feature. We proposed an explanation of the Kuroshio acceleration using a hydraulic control theory. An analytical solution was applied to the coastal topography around the Kii Peninsula. The solution captured some aspects of the Kuroshio acceleration.  相似文献   
97.
98.
We have developed a new system for real-time observation of tsunamis and crustal deformation using a seafloor pressure sensor, an array of seafloor transponders and a Precise Point Positioning (PPP ) system on a buoy. The seafloor pressure sensor and the PPP system detect tsunamis, and the pressure sensor and the transponder array measure crustal deformation. The system is designed to be capable of detecting tsunami and vertical crustal deformation of ±8 m with a resolution of less than 5 mm. A noteworthy innovation in our system is its resistance to disturbance by strong ocean currents. Seismogenic zones near Japan lie in areas of strong currents like the Kuroshio, which reaches speeds of approximately 5.5 kt (2.8 m/s) around the Nankai Trough. Our techniques include slack mooring and new acoustic transmission methods using double pulses for sending tsunami data. The slack ratio can be specified for the environment of the deployment location. We can adjust slack ratios, rope lengths, anchor weights and buoy sizes to control the ability of the buoy system to maintain freeboard. The measured pressure data is converted to time difference of a double pulse and this simple method is effective to save battery to transmit data. The time difference of the double pulse has error due to move of the buoy and fluctuation of the seawater environment. We set a wire-end station 1,000 m beneath the buoy to minimize the error. The crustal deformation data is measured by acoustic ranging between the buoy and six transponders on the seafloor. All pressure and crustal deformation data are sent to land station in real-time using iridium communication.  相似文献   
99.
Ar-Ar ages, and petrographical and geochemical characteristics of pyroclastics and an overlying lava from Teshima Island, southwest Japan are presented. Although previous geological and age data suggested Teshima pyroclastics were products of magmatism > 3 my prior to lava flows of Setouchi volcanic rocks generated in association with southward migration of the southwest Japan arc sliver during opening of the Sea of Japan backarc basin at ~ 15 Ma, the present results led to the conclusion that a sequence of Setouchi volcanism, induced by slab melting and subsequent melt-mantle reactions, produced both pyroclastics and lava at 14.6–14.8 Ma. This age is oldest among those reported so far and may represent the timing of onset of characteristic Setouchi magmatism immediately posterior to and hence as a result of the mega-tectonic event including rotation of the southwest Japan arc sliver.  相似文献   
100.
Chronological, geochemical and Sr–Nd–Pb isotopic analyses have been carried out on the Mesozoic plutons in western Shandong with the aim of characterizing crustal–mantle evolution during the tectono-thermal reactivation of the craton. Detailed SHRIMP zircon U–Pb dating reveals two main periods of Mesozoic activity with contrasting compositions. The older magmatic pulse is manifested by monzonites and monzodiorites from Tongshi for which zircon rims yield a concordant age of 177±4 Ma and the cores have a discordant age of ca. 2.5 Ga. Low MgO and Cr, high Na2O contents and especially their isotopic compositions (87Sr/86Sr < 0.7042, 206Pb/204Pb < 16.8 and Nd ~ –12) are consistent with derivation from late Archean–Paleoproterozoic lower crust. Relatively high HREE contents in these Jurassic plutons indicate a garnet-free source (<32 km), in contrast to the garnet-bearing source (>40 km) of the late Mesozoic high Sr and low Y granitoids from the same region. Distinctively different depths of crustal melting suggest dynamic thickening of the crust by magmatic underplating during the Jurassic and Cretaceous. The younger dioritic plutons from Laiwu and Yinan were emplaced at 132–126 Ma and show relatively high MgO and Cr contents and large isotopic variability. They were likely derived from enriched lithospheric mantle source and were subjected to crustal contamination during magma evolution. Early Cretaceous mantle melting is coeval with the widespread late Yanshanian granitic magmatism in North China. Early Cretaceous time may correspond to a critical period when a temperature increase due to lithospheric thinning allowed the intersection of the local geotherm and the wet peridotite solidus. While some mantle-derived magmas were erupted, most were trapped at variable crustal depths, triggering large-scale concomitant melting of the crust. Lithospheric thinning must have continued until the late Cretaceous because of the change in the source of mafic magmas from lithospheric to asthenospheric at that time. It is proposed that removal of the lithospheric keel beneath the North China craton may have been initiated as early as the Jurassic, but with the most intense period in the Cretaceous between 130–75 Ma. Such a relatively long timescale (~100 Ma) emphasizes the role of thermomechanical erosion by convective mantle in lithospheric thinning beneath this region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号