首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   4篇
  国内免费   2篇
测绘学   2篇
大气科学   12篇
地球物理   64篇
地质学   98篇
海洋学   31篇
天文学   22篇
综合类   2篇
自然地理   29篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   6篇
  2015年   5篇
  2014年   7篇
  2013年   8篇
  2012年   7篇
  2011年   12篇
  2010年   13篇
  2009年   13篇
  2008年   12篇
  2007年   9篇
  2006年   11篇
  2005年   8篇
  2004年   14篇
  2003年   8篇
  2002年   10篇
  2001年   11篇
  2000年   3篇
  1999年   3篇
  1998年   8篇
  1997年   6篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   6篇
  1985年   5篇
  1984年   2篇
  1983年   5篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   4篇
  1973年   1篇
  1968年   1篇
  1965年   1篇
  1961年   1篇
排序方式: 共有260条查询结果,搜索用时 46 毫秒
161.
High-temperature Raman spectra and thermal expansion of tuite, γ-Ca3(PO4)2, have been investigated. The effect of temperature on the Raman spectra of synthetic tuite was studied in the range from 80 to 973 K at atmospheric pressure. The Raman frequencies of all observed bands for tuite continuously decrease with increasing temperature. The quantitative analysis of temperature dependence of Raman bands indicates that the changes in Raman frequencies for stretching modes (ν3 and ν1) are faster than those for bending modes (ν4 and ν2) of PO4 in the present temperature range, which may be attributed to the structural evolution of PO4 tetrahedron in tuite at high temperature. The thermal expansion of tuite was examined by means of in situ X-ray diffraction measurements in the temperature range from 298 to 923 K. Unit cell parameters and volume were analyzed, and the thermal expansion coefficients were obtained as 3.67 (3), 1.18 (1), and 1.32 (3) × 10?5 K?1 for V, a, and c, respectively. Thermal expansion of tuite shows an axial anisotropy with a larger expansion coefficient along the c-axis. The isothermal and isobaric mode Grüneisen parameters and intrinsic anharmonicity of tuite have been calculated by using present high-temperature Raman spectra and thermal expansion coefficient combined with previous results of the isothermal bulk modulus and high-pressure Raman spectra.  相似文献   
162.
This study investigated temporal variations in the vertical structure and water properties of a warm-core ring that migrated into the western subarctic gyre of the North Pacific, based on analyses of temperature and salinity data derived from two profiling floats, together with shipboard and satellite observation data. The floats were initially deployed into cold and fresh Oyashio water in September 2003, and were entrained into a warm-core ring in October 2003, remaining within the ring until detrainment in December 2004. Drastic cooling and freshening of the upper core water of the ring were observed during the above entrainment of the floats with cold and fresh water into the ring, whereas moderate variations in structure and water properties were observed during a quasi-isolated phase from November 2003 to November 2004 when the ring did not experience major interactions with ambient hydrographic features. The upper part of the core water (upper core), with relatively warm/saline water above 26.6 σ θ , was under the influence of the atmosphere in winter via the formation of a deep mixed layer exceeding 300 dB, and had a prominent pycnostad below the seasonal pycnocline from spring to autumn. In contrast, the lower core, with relatively cold and fresh water below 26.6 σ θ , was not ventilated throughout the observation period. Isopycnal surfaces showed a shoaling trend of about 50 dB/year during the quasi-isolated phase, suggesting viscous decay over a timescale of several years. Markedly cold and thick water was also frequently observed within the ring, indicating the intrusion of water from the Sea of Okhotsk.  相似文献   
163.
Yamato 984028 (Y984028) is a newly identified lherzolitic shergottite, recovered from the Yamato Mountains, Antarctica, in 1999. As part of a consortium study, we conducted petrographic observations of Y984028 and its melt vein in order to investigate its shock metamorphism. The rock displays the typical non-poikilitic texture of lherzolitic shergottite, characterized by a framework of olivine, minor pyroxene (pigeonite and augite), and interstitial maskelynite. Shock metamorphic features include irregular fractures in olivine and pyroxene, shock-induced twin-lamellae in pyroxene, and the complete conversion of plagioclase to maskelynite, features consistent with those found in other lherzolitic shergottites. The melt vein is composed of coarse mineral fragments (mainly olivine) entrained in a matrix of fine-grained euhedral olivine (with several modes of compositional zoning) and interstitial glassy material. Some coarse olivine fragments consist of an assemblage of fine-grained euhedral to subhedral olivine crystals, suggesting shock-induced fragmentation, recrystallization, and/or a process of sintering. The implication is that the fine-grained olivine crystals in the matrix of the melt vein represent complicated crystallization environments and histories.  相似文献   
164.
Climate and grazing are the main drivers of plant community composition and species richness in arid environments. This study aimed to examine the vegetation response to a spatial precipitation gradient, interannual rainfall variability, and grazing pressure in Mongolia. To examine the effect of a spatial precipitation gradient, we compared species richness among six sites. To investigate the effects of interannual rainfall variability and grazing pressure, we compared species richness for 2 years at two sites, in desert-steppe and steppe areas. The regional gradient in annual precipitation showed positive and negative relationships with grass richness and shrub richness, respectively, although total species richness did not vary significantly. The proportions of the different functional groups were affected by grazing pressure and rainfall variability in both zones. In the desert-steppe zone, species richness was lower in the drier year but did not vary with grazing pressure. In the steppe zone, species richness varied significantly with grazing pressure but did not vary between years. Precipitation would be more important than grazing pressure on vegetation changes in drier areas with high rainfall variability.  相似文献   
165.
166.
The Beni Suef Basin is a petroliferous rift basin straddling the River Nile containing a thick Mesozoic–Paleogene succession. The Kharita Formation is formed in the syn-rift phase of the basin formation and is subdivided into the Lower and Upper Kharita members. These two members are regarded as two third-order depositional sequences (DSQ-1 and DSQ-2). The lowstand systems tract (LST-1) of the DSQ-1 is represented by thick amalgamated sandstone bodies deposited by active braided channels. Mid-Albian tectonic subsidence led to a short-lived marine invasion which produced coastal marine and inner-shelf facies belts during an ensuing transgressive systems tract (TST-1). At the end of the mid-Albian, a phase of tectonic uplift gradually rose the continent creating a fall in relative sea level, resulting in deposition of shallow marine and estuarine facies belts during a highstand systems tract (HST-1). During the Late Albian, a new phase of land-rejuvenation commenced, with a prolonged phase of fluvial depositional. Fluvial deposits consisted of belts of amalgamated, vertically aggraded sandstones interpreted as braided and moderately sinuous channels, in the lower part of the Upper Kharita Member lowstand stage (LST-2). The continuous basin filling, coupled with significant lowering in the surrounding highlands changed the drainage regime into a wide belt of meandering river depositing the transgressive stage (TST-2). The history of the Kharita Formation finalized with a Cenomanian marine transgressive phase. Economically, the TST-1 and HST-1 play a significant role as source rocks for hydrocarbon accumulations, whereas LST-2 act as good reservoir rocks in the Early Cretaceous in the Basin.  相似文献   
167.
168.
169.
170.
The phase and melting relations of the C-saturated C–Mg–Fe–Si–O system were investigated at high pressure and temperature to understand the role of carbon in the structure of the Earth, terrestrial planets, and carbon-enriched extraterrestrial planets. The phase relations were studied using two types of experiments at 4 GPa: analyses of recovered samples and in situ X-ray diffractions. Our experiments revealed that the composition of metallic iron melts changes from a C-rich composition with up to about 5 wt.% C under oxidizing conditions (ΔIW = ?1.7 to ?1.2, where ΔIW is the deviation of the oxygen fugacity (fO2) from an iron-wüstite (IW) buffer) to a C-depleted composition with 21 wt.% Si under reducing conditions (ΔIW < ?3.3) at 4 GPa and 1,873 K. SiC grains also coexisted with the Fe–Si melt under the most reducing conditions. The solubility of C in liquid Fe increased with increasing fO2, whereas the solubility of Si decreased with increasing fO2. The carbon-bearing phases were graphite, Fe3C, SiC, and Fe alloy melt (Fe–C or Fe–Si–C melts) under the redox conditions applied at 4 GPa, but carbonate was not observed under our experimental conditions. The phase relations observed in this study can be applicable to the Earth and other planets. In hypothetical reducing carbon planets (ΔIW < ?6.2), graphite/diamond and/or SiC exist in the mantle, whereas the core would be an Fe–Si alloy containing very small amount of C even in the carbon-enriched planets. The mutually exclusive nature of C and Si may be important also for considering the light elements of the Earth’s core.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号