排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
2.
Narges?PalizdanEmail author Yashar?Falamarzi Yuk?Feng?Huang Teang?Shui?Lee 《Stochastic Environmental Research and Risk Assessment (SERRA)》2017,31(4):853-877
The main purpose of this study was to determine the most dominant periodic components that affect the annual and seasonal precipitation trends in each homogenous rainfall region in the Langat River Basin, Malaysia for the period 1982–2011. Performing this research could be essential because in the previous studies on detection of trend in Malaysia, the details of variations of different time scales and the periodic responsible for the observed trends were not investigated. Using discrete wavelet transform (DWT) coupled with Mann–Kendall at the regional scale for the first time particularly in the context of Malaysia is the contribution of this study. In order to form the homogenous rainfall regions, first the total annual and seasonal precipitation in each year was spatialized into 5 km × 5 km grids using the inverse distance weighting method. The obtained precipitation series for the grids were then grouped applying the Ward’s clustering method based on the similarity of precipitation time series. After allocating a cluster number to each grid, the boundary of the regions was formed in ArcGIS software. Following which, in each homogenous region the areal precipitation series were computed by the Thiessen polygon method. The Mann–Kendall (MK) test was used to detect trend and the DWT coupled with the MK test and the sequential MK analysis were then utilized in order to find out the time scale which affected the observed trend in each homogenous region. On annual scale, it was found that D1 (plus approximation) component in regions Annual Cluster1 (AC1) and AC2 was the periodic mode responsible for trends. On seasonal scale, in regions Northeast monsoon Cluster 1 (NC1), NC3, SC1 and Southwest monsoon Cluster 2 (SC2), D1 (with approximation), in regions NC4, Inter monsoon 1 Cluster 1 (I1C1), I1C2, Inter monsoon 2 Cluster 1 I2C1 and I2C2, Detail 2 (D2) (plus approximation) and in region NC2, Detail 3 (D3) (with approximation added) component were the most influential periodicity for trends. 相似文献
3.
Narges Palizdan Yashar Falamarzi Yuk Feng Huang Teang Shui Lee Abdul Halim Ghazali 《Theoretical and Applied Climatology》2014,117(3-4):589-606
Various hydrological and meteorological variables such as rainfall and temperature have been affected by global climate change. Any change in the pattern of precipitation can have a significant impact on the availability of water resources, agriculture, and the ecosystem. Therefore, knowledge on rainfall trend is an important aspect of water resources management. In this study, the regional annual and seasonal precipitation trends at the Langat River Basin, Malaysia, for the period of 1982–2011 were examined at the 95 % level of significance using the regional average Mann–Kendall (RAMK) test and the regional average Mann–Kendall coupled with bootstrap (RAMK–bootstrap) method. In order to identify the homogeneous regions respectively for the annual and seasonal scales, firstly, at-site mean total annual and separately at-site mean total seasonal precipitation were spatialized into 5 km?×?5 km grids using the inverse distance weighting (IDW) algorithm. Next, the optimum number of homogeneous regions (clusters) is computed using the silhouette coefficient approach. Next, the homogeneous regions were formed using the K-mean clustering method. From the annual scale perspective, all three regions showed positive trends. However, the application of two methods at this scale showed a significant trend only in the region AC1. The region AC2 experienced a significant positive trend using only the RAMK test. On a seasonal scale, all regions showed insignificant trends, except the regions I1C1 and I1C2 in the Inter-Monsoon 1 (INT1) season which experienced significant upward trends. In addition, it was proven that the significance of trends has been affected by the existence of serial and spatial correlations. 相似文献
4.
Feizabadi Sajjad Rafati Yashar Ghodsian Masoud Akbar Salehi Neyshabouri Ali Abdolahpour Maryam Mazyak Ahmad Rezaee 《Ocean Dynamics》2022,72(6):421-442
Ocean Dynamics - The climatic change has led to the sea-level rise (SLR), which is expected to continue based on the current industrial and human activities. Previous studies indicated that most of... 相似文献
1