首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19938篇
  免费   3785篇
  国内免费   4872篇
测绘学   1370篇
大气科学   3949篇
地球物理   5167篇
地质学   10208篇
海洋学   2418篇
天文学   867篇
综合类   2048篇
自然地理   2568篇
  2024年   105篇
  2023年   369篇
  2022年   1027篇
  2021年   1197篇
  2020年   1000篇
  2019年   1119篇
  2018年   1277篇
  2017年   1111篇
  2016年   1183篇
  2015年   1024篇
  2014年   1254篇
  2013年   1238篇
  2012年   1226篇
  2011年   1243篇
  2010年   1228篇
  2009年   1157篇
  2008年   1052篇
  2007年   932篇
  2006年   757篇
  2005年   728篇
  2004年   556篇
  2003年   493篇
  2002年   481篇
  2001年   532篇
  2000年   589篇
  1999年   845篇
  1998年   678篇
  1997年   652篇
  1996年   624篇
  1995年   506篇
  1994年   455篇
  1993年   422篇
  1992年   355篇
  1991年   236篇
  1990年   178篇
  1989年   175篇
  1988年   136篇
  1987年   96篇
  1986年   71篇
  1985年   56篇
  1984年   47篇
  1983年   34篇
  1982年   36篇
  1981年   18篇
  1980年   16篇
  1979年   16篇
  1978年   13篇
  1977年   7篇
  1975年   6篇
  1958年   17篇
排序方式: 共有10000条查询结果,搜索用时 912 毫秒
861.
Li  Zheng-Wei  Yang  Xiao-Li 《Acta Geotechnica》2021,16(10):3269-3283

The prediction of active earth pressure was generally implemented under the assumptions of two-dimensional conditions and cohesionless soils. However, in practice, the soils usually display a considerable level of cohesion, and the collapse of retained slopes exhibits a three-dimensional (3D) nature. Considering this fact, this paper intends to predict the 3D active earth pressure in cohesive soils based on the kinematic limit-analysis method and a 3D rotational collapse mechanism. The influence of cracks is considered, including a crack forming before the failure of retained soil masses (open crack) and a crack forming simultaneously with the failure (formation crack). The active earth pressure coefficient is estimated based on the work-energy balance principle. In order to facilitate direct application, several design charts are provided. It is shown that accounting for soil cohesion and 3D effects results in a notable decrease in the active earth pressure, whereas considering the existence of cracks would increase the pressure value. This paper develops the studies on active earth pressure, which considers the presence of cohesion, cracks, and 3D effects together for the first time. The results of this paper can offer references in designs of retaining structures for cohesive slopes.

  相似文献   
862.
Mohyla  Tomáš  Boháč  Jan  Mašín  David 《Acta Geotechnica》2021,16(9):2837-2849
Acta Geotechnica - The experimental data dealing with the so-called small strain stiffness of soils are indispensable in developing and calibrating advanced numerical models. A literature review...  相似文献   
863.
Wu  Hui-ming  Ma  Ning  Ma  Quan-kun  Lin  Xiao-fei  Song  Ci 《Acta Geotechnica》2021,16(9):2997-3004

We present an aerosol injection technique (AIT) to accelerate the consolidation of soft soils for ground improvement. We employ high-pressure aerosol injections at different depths to enhance the drainage in soft soils for faster consolidation. The technique is briefly described. A well-instrumented field test is carried out to demonstrate its performance. Compared to the traditional methods, our approach gives rise to faster dissipation of excess pore pressure and larger ground settlement. This method is particularly attractive for the improvement in soft ground in medium depths.

  相似文献   
864.
Xiao  Yang  Zhao  Chang  Sun  Yue  Wang  Shun  Wu  Huanran  Chen  Hui  Liu  Hanlong 《Acta Geotechnica》2021,16(5):1391-1400
Acta Geotechnica - One-dimensional compression tests on quartz sands treated by microbially induced carbonate precipitation (MICP) were carried out to evaluate the effects of gradation and calcium...  相似文献   
865.
Xiao  Yang  Wang  Yang  Wang  Shun  Evans  T. Matthew  Stuedlein  Armin W.  Chu  Jian  Zhao  Chang  Wu  Huanran  Liu  Hanlong 《Acta Geotechnica》2021,16(5):1417-1427
Acta Geotechnica - Microbially induced carbonate precipitation (MICP) has been actively investigated as a promising method to improve soil properties. A burning issue impeding its wide application...  相似文献   
866.
The Xingmeng Orogenic Belt evolved through a long-lived orogeny involving multiple episodes of subduction and accretion. However, there is a debate on its tectonic evolution during the Late Paleozoic. Here, we report geochemical, geochronological, and isotopic data from strongly peraluminous granites and gabbro-diorites from the Sunidzuoqi–Xilinhot region. Zircon U–Pb ages suggest that the intrusive rocks were emplaced during the Early Carboniferous (333–322 Ma). The granites exhibit geochemical characteristics similar to S-type granites, with high SiO2 (72.34–76.53 wt.%), Al2O3 (12.45–14.65 wt.%), and A/CNK (1.07–1.16), but depleted Sr, Nb, and Ta contents. They exhibit positive εNd(t) and εHf(t) values (?0.3 to 2.8 and 2.7–5.7, respectively) and young Nd and Hf model ages (TDM2(Nd)=853–1110 Ma and TDM2(Hf)=975–1184 Ma), suggesting that they may be the partial melting products of heterogeneous sources with variable proportions of pelite, psammite, and metabasaltic rocks. The meta-gabbro-diorites from the Maihantaolegai pluton have low SiO2 (47.06–53.49 wt.%) and K2O (0.04–0.99 wt.%) contents, and demonstrate slight light rare earth element (REE) depletion in the chondrite-normalized REE diagrams. They have high zircon εHf(t) values (14.41–17.34) and young Hf model ages (TDM2(Hf)= 230–418 Ma), indicating a more depleted mantle source. The variations of the Sm/Yb and La/Sm ratios can thus be used to assess the melting degree of the mantle source from 5% to 20%, suggesting a quite shallow mantle melting zone. We propose that the petrogenesis and distribution of the strongly peraluminous granites and gabbro-diorites, as well as the tectonic architecture of the region, can be explained by a ridge subduction model. Based on these results, and previous studies, we suggest a southward ridge subduction model for the Sunidzuoqi–Xilinhot region.  相似文献   
867.
Having a better understanding of air pollutants in railway systems is crucial to ensure a clean public transport. This study measured, for the first time in Brazil, nanoparticles (NPs) and black carbon (BC) on two ground-level platforms and inside trains of the Metropolitan Area of Porto Alegre (MAPA). An intense sampling campaign during thirteen consecutive months was carried out and the chemical composition of NPs was examined by advanced microscopy techniques. The results showed that highest concentrations of the pollutants occur in colder seasons and influenced by variables such as frequency of the trains and passenger densities. Also, internal and external sources of pollution at the stations were identified. The predominance of NPs enriched with metals that increase oxidative stress like Cd, Fe, Pb, Cr, Zn, Ni, V, Hg, Sn, and Ba both on the platforms and inside trains, including Fe-minerals as hematite and magnetite, represents a critical risk to the health of passengers and employees of the system. This interdisciplinary and multi-analytical study aims to provide an improved understanding of reported adverse health effects induced by railway system aerosols.  相似文献   
868.
Jia  Mincai  Liu  Bo  Xue  Jianfeng  Ma  Guoqing 《Acta Geotechnica》2021,16(3):731-747

Discrete element method has been widely adopted to simulate processes that are challenging to continuum-based approaches. However, its computational efficiency can be greatly compromised when large number of particles are required to model regions of less interest to researchers. Due to this, the application of DEM to boundary value problems has been limited. This paper introduces a three-dimensional discrete element–finite difference coupling method, in which the discrete–continuum interactions are modeled in local coordinate systems where the force and displacement compatibilities between the coupled subdomains are considered. The method is validated using a model dynamic compaction test on sand. The comparison between the numerical and physical test results shows that the coupling method can effectively simulate the dynamic compaction process. The responses of the DEM model show that dynamic stress propagation (compaction mechanism) and tamper penetration (bearing capacity mechanism) play very different roles in soil deformations. Under impact loading, the soil undergoes a transient weakening process induced by dynamic stress propagation, which makes the soil easier to densify under bearing capacity mechanism. The distribution of tamping energy between the two mechanisms can influence the compaction efficiency, and allocating higher compaction energy to bearing capacity mechanism could improve the efficiency of dynamic compaction.

  相似文献   
869.
Hou  Michael Z.  Li  Mengting  Gou  Yang  Feng  Wentao 《Acta Geotechnica》2021,16(4):985-1000

Hydraulic fracturing is an essential technology for the development of unconventional resources such as tight gas. The evaluation of the fracture performance and productivity is important for the design of fracturing operations. However, the traditional dimensionless fracture conductivity is too simple to be applied in real fracturing operations. In this work, we proposed a new model of dimensionless fracture conductivity (FCD), which considers the irregular fracture geometry, proppant position and concentration. It was based on the numerical study of the multistage hydraulic fracturing and production in a tight gas horizontal well of the North German Basin. A self-developed full 3D hydraulic fracturing model, FLAC3Dplus, was combined with a sensitive/reliability analysis and robust design optimization tool optiSLang and reservoir simulator TMVOCMP to achieve an automatic history matching as well as simulation of the gas production. With this tool chain, the four fracturing stages were history matched. The simulation results show that all four fractures have different geometry and proppant distribution, which is mainly due to different stress states and injection schedule. The position and concentration of the proppant play important roles for the later production, which is not considered in the traditional dimensionless fracture conductivity FCD. In comparison, the newly proposed formulation of FCD could predict the productivity more accurately and is better for the posttreatment evaluation.

  相似文献   
870.
Fine characterization of pore systems and heterogeneity of shale reservoirs are significant contents of shale gas reservoir physical property research.The research on micro-control factors of low productivity in the Qiongzhusi Formation(Fm.)is still controversial.The lower Cambrian Qiongzhusi Fm.in the Qujing,Yunnan was taken as the object to investigate the influence of mineral compositions on the phys-ical properties of the reservoir and the heterogeneity of shale,using the algorithm to improve the char-acterization ability of Atomic Force Microscopy(AFM).The results showed that:(1)The pores are mainly wedge-shaped pores and V-shaped pores.The pore diameter of the main pore segment ranges from 5 to 10 nm.Mesopores are mainly developed in the Qiongzhusi Fm.shale in Well QD1,with the average pore diameter of 6.08 nm.(2)Microscopic pore structure and shale surface properties show strong hetero-geneity,which complicates the micro-migration of shale gas and increases the difficulty of identifying high-quality reservoirs.(3)The increase of clay mineral content intensifies the compaction and then destroys the pores.Conversely,brittle minerals can protect pores.The support and protection of brittle minerals to pores space depend on their content,mechanical properties and diagenesis.(4)Compression damage to pores,large microscopic roughness and surface fluctuations and strong pore structure heterogeneity are the reasons for the poor gas storage capacity of the Qiongzhusi Fm.,which will lead to poor productivity in the Qiongzhusi Fm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号