首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   8篇
  国内免费   2篇
大气科学   4篇
地球物理   10篇
地质学   27篇
海洋学   4篇
天文学   13篇
自然地理   4篇
  2022年   1篇
  2021年   1篇
  2019年   5篇
  2018年   6篇
  2017年   3篇
  2016年   6篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2009年   4篇
  2008年   5篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2000年   4篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1982年   1篇
  1970年   1篇
  1962年   1篇
  1957年   1篇
  1936年   1篇
  1927年   1篇
排序方式: 共有62条查询结果,搜索用时 31 毫秒
41.
42.
43.
44.
45.
A new species of lanternshark, Etmopterus alphus (Squaliformes: Etmopteridae), is described from the south-western Indian Ocean. The new species resembles other members of the ‘Etmopterus lucifer’ clade in having linear rows of dermal denticles and most closely resembles E. molleri from the south-western Pacific. The new species is fairly common along the upper continental slopes off central Mozambique, at depths between 472 and 558?m, and is also found on the southern Madagascar Ridge in 650–792?m depth. It can be distinguished from other members of the E. lucifer clade by a combination of characteristics, including arrangement of flank and caudal markings, dimension of flank markings and shape, size and arrangement of dermal denticles along the body. Molecular analysis further supports the distinction of E. alphus from other members of the E. lucifer clade.  相似文献   
46.
47.
Flash-flood warning models can save lives and protect various kinds of infrastructure. In dry climate regions, rainfall is highly variable and can be of high-intensity. Since rain gauge networks in such areas are sparse, rainfall information derived from weather radar systems can provide useful input for flash-flood models. This paper presents a flash-flood warning model which utilizes radar rainfall data and applies it to two catchments that drain into the dry Dead Sea region. Radar-based quantitative precipitation estimates (QPEs) were derived using a rain gauge adjustment approach, either on a daily basis (allowing the adjustment factor to change over time, assuming available real-time gauge data) or using a constant factor value (derived from rain gauge data) over the entire period of the analysis. The QPEs served as input for a continuous hydrological model that represents the main hydrological processes in the region, namely infiltration, flow routing and transmission losses. The infiltration function is applied in a distributed mode while the routing and transmission loss functions are applied in a lumped mode. Model parameters were found by calibration based on the 5 years of data for one of the catchments. Validation was performed for a subsequent 5-year period for the same catchment and then for an entire 10-year record for the second catchment. The probability of detection and false alarm rates for the validation cases were reasonable. Probabilistic flash-flood prediction is presented applying Monte Carlo simulations with an uncertainty range for the QPEs and model parameters. With low probability thresholds, one can maintain more than 70% detection with no more than 30% false alarms. The study demonstrates that a flash-flood warning model is feasible for catchments in the area studied.  相似文献   
48.
The study focuses on the formation of lacustrine dolomite in late Miocene lakes, located at the East Mediterranean margins (Northern Israel). These lakes deposited the sediments of the Bira (Tortonian) and Gesher (Messinian) formations that comprise sequences of dolostone and limestone. Dolostones are bedded, consist of small‐sized (<7 μm), Ca‐rich (52 to 56 mol %) crystals with relatively low ordering degrees, and present evidence for replacement of CaCO3 components. Limestones are comprised of a wackestone to mudstone matrix, freshwater macrofossils and intraclasts (mainly in the Bira Formation). Sodium concentrations and isotope compositions differ between limestones and dolostones: Na = ~100 to 150 ppm; ~1000 to 2000 ppm; δ18O = ?3·8 to ?1·6‰; ?2·0 to +4·3‰; δ13C = ?9·0 to ?3·4‰; ?7·8 to 0‰ (VPDB), respectively. These results indicate a climate‐related sedimentation during the Tortonian and early Messinian. Wet conditions and positive freshwater inflow into the carbonate lake led to calcite precipitation due to intense phytoplankton blooms (limestone formation). Dry conditions and enhanced evaporation led to precipitation of evaporitic CaCO3 in a terminal lake, which caused an increased Mg/Ca ratio in the residual waters and penecontemporaneous dolomitization (dolostone formation). The alternating lithofacies pattern reveals eleven short‐term wet–dry climate‐cycles during the Tortonian and early Messinian. A shift in the environmental conditions under which dolomite formed is indicated by a temporal decrease in δ18O of dolostones and Na content of dolomite crystals. These variations point to decreasing evaporation degrees and/or an increased mixing with meteoric waters towards the late Messinian. A temporal decrease in δ13C of dolostones and limestones and appearance of microbial structures in close association with dolomite suggest that microbial activity had an important role in allowing dolomite formation during the Messinian. Microbial mediation was apparently the main process that enabled local growth of dolomite under wet conditions during the latest Messinian.  相似文献   
49.
Since the 1960s, hypervelocity impact experiments have been conducted to study the complex deformation mechanisms which occur in the subsurface of meteorite craters. Here, we present ultrasound tomography measurements of the damage zone underneath seven experimentally produced impact craters in sandstone cubes. Within the framework of the Multidisciplinary Experimental and Modeling Impact Research Network and the NEOShield Project, decimeter-sized sandstone targets were impacted by aluminum and steel projectiles with radii of 2.5, 4, and 5 mm at velocities between ~3.0 and ~7.4 km s−1. The 2-D ultrasound tomography clearly shows a correlation between impact energy and the damaged volume within the target blocks. When increasing impact energies from 805 to 2402 J, a corresponding increase in the damage radius from ~13.1 cm to ~17.6 cm was calculated. p-Wave velocity reductions up to 18.3% (for the highest impact energy) were observed in the vicinity of the craters. The reduction in seismic velocity decreased uniformly and linearly with increasing distance from the impact point. The damage intensities correspond to peak damage parameters of 0.4–0.51 compared to undamaged target blocks. In addition to the damage zone below the crater, we could identify weakened zones at the sandstone walls which represent precursors of spalling. The volume of the damaged subsurface beneath experimentally produced craters determined through ultrasound tomography is larger than that obtained from previously reported p-wave velocity reductions or to microscopic and microcomputed tomography observations of crack densities in experimentally produced craters.  相似文献   
50.
This study introduces an experimental approach using direct laser irradiation to simulate the virtually instantaneous melting of target rocks during meteorite impacts. We aim at investigating the melting and mixing processes of projectile (iron meteorite; steel) and target material (sandstone) under idealized conditions. The laser experiments (LE) were able to produce features very similar to those of impactites from meteorite craters and cratering experiments, i.e., formation of lechatelierite, partial to complete melting of sandstone, and injection of projectile droplets into target melts. The target and projectile melts have experienced significant chemical modifications during interaction of these coexisting melts. Emulsion textures, observed within projectile‐contaminated target melts, indicate phase separation of silicate melts with different chemical compositions during quenching. Reaction times of 0.6 to 1.4 s could be derived for element partitioning and phase‐separation processes by measuring time‐depended temperature profiles with a bolometric detector. Our LE allow (i) separate melting at high temperatures to constrain primary melt heterogeneities before mixing of projectile and target, (ii) quantification of element partitioning processes between coexisting projectile and target melts, (iii) determination of cooling rates, and (iv) estimation of reaction times. Moreover, we used a thermodynamic approach to calculate the entropy gain during laser melting. The entropy changes for laser‐melting of sandstone and iron meteorite correspond to shock pressures and particle velocities produced during the impact of an iron projectile striking a quartz target at a minimum impact velocity of ~6 km s?1, inducing peak shock pressures of ~100 GPa in the target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号