首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1069篇
  免费   220篇
  国内免费   335篇
测绘学   266篇
大气科学   135篇
地球物理   151篇
地质学   500篇
海洋学   293篇
天文学   28篇
综合类   79篇
自然地理   172篇
  2024年   8篇
  2023年   30篇
  2022年   61篇
  2021年   65篇
  2020年   48篇
  2019年   63篇
  2018年   74篇
  2017年   66篇
  2016年   68篇
  2015年   67篇
  2014年   52篇
  2013年   65篇
  2012年   100篇
  2011年   82篇
  2010年   80篇
  2009年   81篇
  2008年   99篇
  2007年   85篇
  2006年   90篇
  2005年   93篇
  2004年   46篇
  2003年   44篇
  2002年   43篇
  2001年   49篇
  2000年   22篇
  1999年   17篇
  1998年   6篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1989年   1篇
  1987年   1篇
  1965年   1篇
  1957年   3篇
  1954年   2篇
  1933年   3篇
排序方式: 共有1624条查询结果,搜索用时 437 毫秒
101.
为分析谷胱甘肽硫-转移酶M基因(glutathione S-transferases M,GSTM)与鱼类低温耐受性的相关性,本实验运用PCR-SSCP技术研究了130尾斑马鱼(Danio rerio)GSTM基因5?UTR、3?UTR和第一内含子序列的单核苷酸多态性(Single nucleotide polymorphisms,SNPs),同时分析了筛选到的基因型与其低温耐受性状的关联性。结果显示,在其5UTR区域检测到AB、BC、AC 3种基因型个体,共A、B、C 3个等位基因,其观测杂合度和期望杂合度分别是1.000和0.570,多态信息含量为0.472,所检测群体在该座位偏离了Hardy-Weinberg平衡;第1内含子中检测到DD、DE和EE 3种基因型个体,共D、E两个等位基因,其观测杂合度和期望杂合度分别为0.408和0.477,多态信息含量为0.362,群体在该座位符合Hardy-Weinberg平衡。3'UTR区域中没有发现多态性。上述2个SNP座位与斑马鱼低温耐受性状的关联分析结果表明,5'UTR区3种基因型与低温耐受性状均没有显著相关性(χ2=4.029,P0.05)。而第1内含子3种基因型与低温耐受性状显著相关(χ2=8.498,P0.05):DD基因型在耐低温群体中占优势(50.00%),并表现为对受低温胁迫斑马鱼的保护性因素(OR=0.520,95%CI=0.255–1.061),而DE基因型在不耐低温群体中占优势(51.31%),表现为低温胁迫下斑马鱼的危险因素(OR=3.012,95%CI=1.413–6.419)。研究结果为GSTM基因SNPs位点与斑马鱼低温耐受性能关联分析提供了依据,也将为海水经济鱼类抗寒标记筛选育种提供参考。  相似文献   
102.
Xiangshan bay is a narrow semi-closed bay and situated on the northwestern coast of the East China Sea. Over past decades, it has become to a major bay with intensive human activities, dense urbanized area, and poor water quality. The aim of this paper was to reveal the ecological status through the elucidation of the species composition, abundance, biomass and diversity of macrobenthos in this bay. Six intertidal sections were surveyed from January 2007 to November 2008 quarterly. Sections TG, HD and XH are located in the three inner bays, sections QJ and WS are located near the thermal power plants, and section XX is located at the outer part of Xiangshan Bay. Great variations in macrobenthos community were indentified, and the species composition of the community in the present study showed the dominance in the order of molluscs(bivalves and gastropods), crustaceans and others, and only few Polychaeta were recorded. Only three dominant species, Littorina brevicula, Ilyplax tansuiensis, and Cerithidea cingulata were collected in all the sections, and a total of 19 dominant species were recorded only in one section. Two-way ANOVA analyses of abundance indicated that there were significant differences among sections or seasons. Shannon-Wiener diversity index(H’) had its maximum(2.45) in section QJ, and minimum(1.76) in section TG. Multiple irregular k-dominance plots clearly showed that the study area was polluted and the macrobenthos community was under stress. We conclude that the macrobenthos of Xiangshan Bay have been disturbed by human activities, especially at the interior bay.  相似文献   
103.
城市环境中的行道树、车辆、杆状交通设施是重要的交通地物,也是智能交通,导航与位置服务,自动驾驶和高精地图等行业应用的核心要素.为了准确识别这些路侧目标,本文提出一种融合点云和多视角图像的深度学习模型PGVNet(point-group-vi ew network),充分利用目标点云数据中空间几何信息及其多视角图像中高级全局特征提升路侧行道树、车辆和杆状设施的分类精度.为了减少视图间的冗余信息并增强显著视图特征,PGVNet模型利用预训练的VGG网络提取多视图特征,对其进行分组赋权获取最优视图特征;采用嵌入注意力机制的融合策略,利用最优视图特征动态调整PGVNet模型对点云不同局部关系的注意力度,学习不同路侧目标的多层次、多尺度显著特征,实现行道树、车辆和杆状交通设施的精确分类.试验采用5份不同车载激光扫描系统获取的不同城市场景数据验证本文方法的有效性,其中行道树、车辆及杆状交通设施分类结果中的准确率、召回率、精度和F1指数分别达(99.19%、94.27%、93.58%、96.63%);(94.20%、97.56%、92.02%、95.68%);(91.48%、98.61%、90.39%、94.87%).结果表明,本文方法融合多视图全局信息和点云局部结构特征可以有效区分城市场景中的行道树、车辆和杆状交通设施,可为高精度地图中要素构建与矢量化提供数据支撑.  相似文献   
104.
针对盘营铁路专线、哈大铁路专线沿线沉降监测研究较少,采用InSAR技术获取了研究区地表形变信息,还对其进行了相关分析.用SBAS-InSAR对35景Sentinel-1A SAR数据进行处理,获取VV、VH极化下的年均沉降速率及沉降序列;以年均沉降速率为研究对象,进行沿线沉降特征分析及交叉验证;利用小波变换对沉降序列降噪处理,用改进BP神经网络对降噪后沉降序列预测分析.研究结果表明,研究区内高速铁路沿线共监测出6个明显沉降区域,最大沉降速率达50mm/a;两种极化年均沉降速率具有较高的一致性,降噪处理后的沉降序列更加平滑;改进BP神经网络具有较高的收敛速度,其预测精度有较大提高.  相似文献   
105.
野外考察发现,雅布赖盆地红柳沟发育一套较完整的中侏罗统扇三角洲沉积地层。其中沉积亚相有扇三角洲平原、扇三角洲前缘及前扇三角洲亚相;沉积微相包括辫状河道、天然堤、决口、沼泽、水下分流河道、水下分流河道间、河口坝、席状砂等沉积微相。从沉积构造特征分析可以看出,河道沉积发育于水动力条件较强的沉积环境,扇三角洲前缘河口坝沉积发育于强与弱水动力条件交替出现的沉积环境,而前扇三角洲则在比较稳定的水动力条件下沉积。对野外6个泥岩样品的微量元素化验结果用蜘蛛图解分析处理,得到样品所含微量元素V、Sr、Rb、B相对富集,而Zr、Cr、Ni相对亏损。通过对该地区样品w(Fe^2+)/w(Fe^3+)及气候指数计算表明,当时为弱氧化、半干旱的沉积环境。  相似文献   
106.
尤正文 《吉林地质》2010,29(2):159-160,164
应收账款是地勘企业的一项资金投放,是地勘企业为了扩大销售和增加盈利而进行的投资。本文提出应收账款产生的原因,针对地勘企业应收账款的管理提出合理控制方案。  相似文献   
107.
近年来风暴潮等海洋灾害日趋频发,沙质海岸侵蚀问题也愈发突出,沙滩稳定防护显得日益重要。为研究风暴浪作用下沙质岸滩稳定机制问题,设计了一系列的水槽试验,对风暴浪作用下沙质岸滩的稳定机制和演变过程进行了录像观察和研究分析。试验中采用图像处理技术,根据水和岸滩床面的像素值差异,对岸滩整体剖面进行实时动态提取;对比和分析了不同入射波高、波周期、水深、岸滩初始坡度以及波高连续变化下沙质岸滩演变过程。试验结果表明,岸滩稳定与岸滩初始坡度和沙坝的发育直接相关,而波参数主要影响岸滩扰动幅度和沙坝以及前滩侵蚀边界的位置变化。当入射波高连续变化时,沙坝迅速响应并向离岸迁移。岸滩变化幅值与入射波能流存在明显正相关关系,波能流越大对岸滩稳定性的危害越大。而水位升高会增强前滩向岸侵蚀风险。此外,在本试验尺度下,前滩以侵蚀为主。当岸滩初始坡度小于稳定坡度且波陡较小时,即Dean参数Ω''较小时,岸滩才发生明显的前滩淤积,这对于试验尺度下岸滩恢复工况研究至关重要。具体来说,当岸滩整体坡度为1:10且前滩坡度达到1:5~1:2.5时,岸滩稳定性最好,岸滩形态最接近最终平衡剖面,岸滩趋于稳定的时间最短。  相似文献   
108.
结合盆缘露头、盆地基底钻井及重磁震资料,综合研究莺歌海盆地前新生代基底特征。基于盆地西北缘Song Da带18个剖面点地层序列、166件岩石样品密度和2800套磁化率测量结果,建立密度--磁化率交汇图版,约束盆内地震剖面和重磁异常解释,通过海陆结合的方法填制出盆地基底地质图。其前新生界由前震旦系、寒武系-上三叠统下部、上三叠统上部-白垩系三个构造层构成,它们沿红河断裂呈北西向分布,中间老,为前震旦纪中-高级变质岩;两侧新,向西为中生代沉积岩,向东为古生代浅变质岩、灰岩。  相似文献   
109.
基于分县尺度的2020-2030年中国未来人口分布   总被引:1,自引:0,他引:1  
王露  杨艳昭  封志明  游珍 《地理研究》2014,33(2):310-322
选取1982年、1990年、2000年和2010年人口普查数据,运用Logistic模型系统预测了2020年和2030年中国分县人口规模,定量分析了未来中国人口分布的基本布局、各地区人口增减变化以及城市群人口集聚度变化。研究认为:①2020-2030年中国未来人口空间分布的总体格局不会发生根本改变,东南半壁人口比例会有所减少,西北半壁人口比例会有所增加,但增减变化在0.1%~0.3%之间;②2010-2020年中国有1641个分县单元人口将仍呈增加趋势,占地规模和相应人口都在全国3/4水平,人口增加仍是主要特征;2020-2030年中国人口增加的分县单元将大幅减少到598个,人口减少地区占地规模和相应人口将占3/5以上,人口减少成为普遍现象。③中国21个城市群地区人口总量将由2010年的7.81亿增加到2020年的8.68亿和2030年的9.17亿,相应的人口集聚度也将由2010年的1.99逐步提高到2020年的2.17和2030年的2.33,城市群地区人口集聚规模和集聚程度在逐步提高,人口集聚态势更加明显。  相似文献   
110.
闽江流域水体氨氮降解系数实验模拟研究   总被引:3,自引:0,他引:3  
本研究采用模拟实验对闽江流域氨氮的降解规律进行研究,降解系数采用稳态一维降解模型进行分析计算,闽江上游流域氨氮的平均降解系数为0.140~0.260 d-1,中下游流域氨氮的平均降解系数为0.099~0.203 d-1。结果表明,闽江上游流域氨氮自净能力比中下游流域的自净能力好,古田溪断面的氨氮平均降解系数低于全国的平均值,说明氨氮自净能力相对较弱,本研究为确定流域水环境容量和纳污能力及制定污染物总量控制提供科学依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号