首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7784篇
  免费   152篇
  国内免费   314篇
测绘学   212篇
大气科学   604篇
地球物理   1619篇
地质学   2882篇
海洋学   637篇
天文学   1850篇
综合类   29篇
自然地理   417篇
  2023年   45篇
  2022年   52篇
  2021年   58篇
  2020年   66篇
  2019年   82篇
  2018年   234篇
  2017年   192篇
  2016年   274篇
  2015年   162篇
  2014年   261篇
  2013年   413篇
  2012年   238篇
  2011年   406篇
  2010年   288篇
  2009年   458篇
  2008年   357篇
  2007年   324篇
  2006年   336篇
  2005年   305篇
  2004年   289篇
  2003年   272篇
  2002年   251篇
  2001年   218篇
  2000年   205篇
  1999年   178篇
  1998年   168篇
  1997年   161篇
  1996年   154篇
  1995年   136篇
  1994年   114篇
  1993年   92篇
  1992年   78篇
  1991年   87篇
  1990年   78篇
  1989年   83篇
  1988年   59篇
  1987年   101篇
  1986年   64篇
  1985年   64篇
  1984年   69篇
  1983年   71篇
  1982年   72篇
  1981年   68篇
  1980年   54篇
  1979年   51篇
  1977年   48篇
  1976年   47篇
  1975年   36篇
  1974年   30篇
  1973年   41篇
排序方式: 共有8250条查询结果,搜索用时 15 毫秒
881.
Slope stability evaluation using Back Propagation Neural Networks   总被引:4,自引:0,他引:4  
The Yudonghe landslide, located in western Hubei Province of China, consists of eastern and western subunits as well as a main landslide mass with upper and lower slip surfaces. As an important landslide close to Shuibuya Dam on the Qing River, its stability is crucial, as the slide might reactivate because of a change in ground-water level caused by filling of the Shuibuya Reservoir. Existing weakness zones, growth of ruptures, the downslope attitude of geologic strata, and water infiltration, which reduced the strength of rocks and soils, have been found to be the most important factors contributing to the Yudonghe landslide. With regard to the landslide processes, it can be noted that the original large-scale slide activity was due to erosion by the Qing River, the second sliding resulted from the fall of blocks from the head scarp, and the final activity was the growth of the eastern and western secondary slides. A base failure was the main type of slope movement, however, it was obvious that more than one sliding event occurred, as inferred from striations and fractures detected by microstructure analysis of soils along the failure surfaces. Slope instability was evaluated by the method of Back Propagation Neural Networks (BPNN), in which a four-layer BPNN model with five input nodes, two hidden layers, and two output nodes was constructed using a training data set of landslide samples throughout the Qing River area. The predicted results of this analysis showed that the factor of safety was 1.10, which indicates that the Yudonghe landslide is currently in a marginally stable condition.  相似文献   
882.
The iron stable isotope compositions (δ56Fe) and iron valence states of ultrahigh‐pressure eclogites from Bixiling in the Dabie orogen belt, China, were measured to trace the changes of geochemical conditions during vertical transportation of earth materials, for example, oxygen fugacity. The bulk Fe3+/ΣFe ratios of retrograde eclogites, determined by Mössbauer spectroscopy, are consistently higher than those of fresh eclogites, suggesting oxidation during retrograde metamorphism and fluid infiltration. The studied eclogites (five samples) display limited mid‐ocean ridge basalts (MORB)‐like (~0.10‰) δ56Fe values, which are indistinguishable from their protoliths, that is, gabbro cumulates formed through differentiation of mantle‐derived basaltic magma. This suggests that Fe isotope fractionation during continental subduction is limited. Garnet separates display limited δ56Fe variation ranging from ?0.08 ± 0.07 ‰ to 0.02 ± 0.07‰, whereas coexisting omphacite displays a large variation of δ56Fe values from 0.15 ± 0.07‰ to 0.47 ± 0.07‰. Omphacite also has highly variable Fe3+/ΣFe ratios from 0.367 ± 0.025 to 0.598 ± 0.024, indicating modification after peak metamorphism. Omphacite from retrograde eclogites has elevated Fe3+/ΣFe ratios (0.54–0.60) compared to that from fresh eclogites (~0.37), whereas garnet displays a narrow range of ferric iron content with Fe3+/ΣFe ratios from 0.039 ± 0.013 to 0.065 ± 0.022. The homogenous δ56Fe values and Fe3+/ΣFe ratios of garnet suggest that it survived the retrograde metamorphism and preserved its Fe‐isotopic features and ferric contents of peak metamorphism. Because of similar diffusion rates of Fe and Mg in garnet and omphacite, and constant Δ26Mgomphacite‐garnet values (1.14 ± 0.04‰), equilibrium iron isotope fractionation between garnet and omphacite was probably achieved during peak metamorphism. Elevated Fe3+/ΣFe ratios of omphacite from retrograde eclogites and variant Δ56Feomphacite‐garnet values of the studied eclogites (0.13 ± 0.10‰ to 0.48 ± 0.10‰) indicate that oxidized geofluid infiltration resulted in the elevation of δ56Fe values of omphacite during retrograde metamorphism.  相似文献   
883.
884.
In order to prepare iron phosphate by waste sludge, we report a method for effective utilization of the sludge obtained from the electrocoagulation treatment of source-separated urine. The sludge was dissolved with hydrochloric acid and pretreated with H2O2 and Na3PO4; finally, NaOH was added to precipitate iron phosphate from the solution. Thermal treatment of the precipitate at 750 °C in air yielded crystalline quartz-like anhydrous FePO4. The precipitate was characterized by a number of thermal techniques such as thermogravimetry/differential thermal analysis, scanning electron microscopy, and X-ray powder diffraction.  相似文献   
885.
The kinetics of Co(II) ions adsorption on thermally activated dolomite was studied with respect to the calcination temperature of natural dolomite. The sorption of Co(II) onto all samples is reasonably fast: The first 30–35 min accounts for approximately 70–80 % of Co(II) removal from feed solutions. In order to select the main rate-determining step in the overall uptake mechanism, a series of experiments were performed and data obtained were interpreted in terms of film diffusion control, intraparticle diffusion, pseudo-first-order and pseudo-second-order models. From the modeling of kinetic data, it can be concluded that adsorption of Co(II) ions from aqueous solution by heat-treated dolomite is a complex phenomenon and occurs in a mixed diffusion mode—the kinetic data are well described by the pseudo-second-order equation. The possible multistage sorption mechanism involving film diffusion and intraparticle diffusion control steps as well as chemical interaction between Co(II) ions and calcined dolomite is proposed.  相似文献   
886.
During the deposition of the Chang-7 (Ch-7) and Chang-6 (Ch-6) units in the Upper Triassic, gravity flows were developed widely in a deep lake in the southwestern Ordos Basin, China. Based on cores, outcrops, well-logs and well-testing data, this paper documents the sedimentary characteristics of the gravity-flow deposits and constructs a depositional model. Gravity-flow deposits in the study area comprise seven lithofacies types, which are categorised into four groups: slides and slumps, debris-flow-dominated lithofacies, turbidity-current-dominated lithofacies, and deep-water mudstone-dominated lithofacies. The seven lithofacies form two sedimentary entities: sub-lacustrine fan and the slump olistolith, made up of three and two lithofacies associations, respectively. Lithofacies association 1 is a channel–levee complex with fining-/thinning-upward sequences whose main part is characterised by sandy debris flow-dominated, thick-bedded massive sandstones. Lithofacies association 2 represents distributary channelised lobes of sub-lacustrine fans, which can be further subdivided into distributary channel, channel lateral margin and inter-channel. Lithofacies association 3 is marked by non-channelised lobes of sub-lacustrine fans, including sheet-like turbidites and deep-lake mudstones. Lithofacies association 4 is represented by proximal lobes of slump olistolith, consisting of slides and slumps. Lithofacies association 5 is marked by distal lobes of slump olistolith, comprising tongue-shaped debris flow lobes and turbidite lobes. It is characterised by sandy debris flow, muddy debris flow-dominated sandstone and sandstone with classic Bouma sequences. Several factors caused the generation of gravity flows in the Ordos Basin, including sediment supply, terrain slope and external triggers, such as volcanisms, earthquakes and seasonal floods. The sediment supply of sub-lacustrine fan was most likely from seasonal floods with a high net-to-gross and incised channels. Triggered by volcanisms and earthquakes, the slump olistolith is deposited by the slumping and secondary transport of unconsolidated sediments in the delta front or prodelta with a low net-to-gross and no incised channels.  相似文献   
887.
888.
889.
The western part of the Argentera–Mercantour massif (French Alps) hosts very large currently active landslides responsible of many disorders and risks to the highly touristic valleys of the Mercantour National Park and skiing resorts. A regional scale mapping of gravitational deformations has been compared to the main geo-structures of the massif. A relative chronology of the events has been established and locally compared to absolute 10Be dating obtained from previous studies. Two types of large slope destabilisations were identified as follows: deep-seated landslides (DSL) that correspond to rock volumes bounded by a failure surface, and deep-seated gravitational slope deformations (DSGSD) defined as large sagging zones including gravitation landforms such as trenches and scarps or counterscarps. Gravitational landforms are mainly collinear to major N140°E and N020°E tectonic faults, and the most developed DSGSD are located in areas where the slope direction is comparable to the orientation of faults. DSL are mostly included within DSGSD zones and located at the slopes foot. Most of DSL followed a similar failure evolution process according to postglacial over steepened topographies and resulting from a progressive failure growing from the foot to the top of the DSGSD that lasts over a 10 ky time period. This massif-scale approach shows that large-scale DSGSD had a peak of activity from the end of the last deglaciation, to approximately 7000 years bp. Both morphologic and tectonic controls can be invoked to explain the gravitational behaviour of the massif slopes.  相似文献   
890.
Significant boron isotope fractionation occurs in nature (?70 ‰ to +75 ‰) due to the high geochemical reactivity of boron and the large relative mass difference between 10B and 11B. Since the 1990s, reconstruction of ancient seawater pH using the isotopic composition of boron in bio-carbonates (δ 11Bcarb), and then calculation of the past pCO2 have become important issues for the international isotope geochemistry community, and are called the δ 11B-pH proxy. Although many achievements have been made by this proxy, various aspects of boron systematics require rigorous evaluation. Based on the previous researches, mechanism of boron isotope fractionation, variation of boron isotope (δ 11B) in nature (especially in bio-carbonates) and controlling factors of the δ 11B-pH proxy, such as the dissociation constant of B(OH)3 in seawater (pKa), the δ 11B of seawater (δ 11BSW), the boron isotopic fractionation factor between B(OH) 4 ? and B(OH)3 (α 4–3), and the incorporated species of boron into bio-carbonates, are reviewed in detail and the research directions of this proxy are proposed. Generally, the controversy about pKa, δ 11Bsw, and α 4–3 is relatively less, but whether boron incorporated into bio-carbonates only in the form of B(OH) 4 ? remains doubtful. In the future, it is required that the physicochemical processes that control boron incorporation into carbonates be rigorously characterized and that the related chemical and isotopic fractionation be quantified. It is also necessary and important to establish a “best-fit empirically equation” between δ 11Bcarb and pH of seawater based on the precipitation experiments of inorganic or culture experiments of corals or foraminifera. In addition, extended application of the δ 11B-pH proxy to the earlier part of the Phanerozoic relying on the Brachiopods is worthy of studying. Like other geochemical indicators, there are limiting factors of δ 11B; however, it remains a very powerful tool in the reconstruction of past seawater pH at present.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号