首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7768篇
  免费   152篇
  国内免费   314篇
测绘学   212篇
大气科学   604篇
地球物理   1608篇
地质学   2879篇
海洋学   636篇
天文学   1849篇
综合类   29篇
自然地理   417篇
  2023年   45篇
  2022年   52篇
  2021年   58篇
  2020年   66篇
  2019年   81篇
  2018年   233篇
  2017年   190篇
  2016年   274篇
  2015年   161篇
  2014年   261篇
  2013年   412篇
  2012年   237篇
  2011年   404篇
  2010年   287篇
  2009年   456篇
  2008年   357篇
  2007年   323篇
  2006年   335篇
  2005年   305篇
  2004年   289篇
  2003年   272篇
  2002年   250篇
  2001年   218篇
  2000年   205篇
  1999年   178篇
  1998年   168篇
  1997年   161篇
  1996年   154篇
  1995年   136篇
  1994年   114篇
  1993年   92篇
  1992年   78篇
  1991年   87篇
  1990年   78篇
  1989年   83篇
  1988年   59篇
  1987年   101篇
  1986年   64篇
  1985年   64篇
  1984年   69篇
  1983年   71篇
  1982年   72篇
  1981年   68篇
  1980年   54篇
  1979年   51篇
  1977年   48篇
  1976年   47篇
  1975年   35篇
  1974年   30篇
  1973年   41篇
排序方式: 共有8234条查询结果,搜索用时 15 毫秒
251.
252.
We present the results of X-ray luminosities of some active late-type stars, based on data primarily from the ROSAT position sensitive proportional counter (PSPC). According to the observations, we divide the stars into four groups: single, wide binary, binary and RS CVn. We investigated the correlation between the X-ray emission and the hardness ratio, coronal temperature, magnetic field strength, magnetic flux density. Our results suggest that the magnetic field plays a very important role in stellar X-ray emission.  相似文献   
253.
The origin of CN radicals in comets is not completely understood so far. We present a study of CN and HCN production rates and CN Haser scale lengths showing that: (1) at heliocentric distances larger than 3 AU, CN radicals could be entirely produced by HCN photolysis; (2) closer to the Sun, for a fraction of comets CN production rates are higher than HCN ones whereas (3) in the others, CN distribution cannot be explained by the HCN photolysis although CN and HCN production rates seem to be similar. Thus, when the comets are closer than 3 AU to the Sun, an additional process to the HCN photolysis seems to be required to explain the CN density in some comets.The photolysis of HC3N or C2N2 could explain the CN origin. But the HC3N production rate is probably too low to reproduce CN density profile, even if uncertainties on its photolysis leave the place for all possible conclusions. The presence of C2N2 in comets is a reliable hypothesis to explain the CN origin; thus, its detection is a challenging issue. Since C2N2 is very difficult to detect from ground-based observations, only in situ measurements or space observations could determine the contribution of this compound in the CN origin.Another hypothesis is a direct production of CN radicals by the photo- or thermal degradation of complex refractory organic compounds present on cometary grains. This process could explain the spatial profile of CN inside jets and the discrepancy noted in the isotopic ratio 14N/15N between CN and HCN. Laboratory studies of the thermal and UV-induced degradation of solid nitrogenated compounds are required to model and validate this hypothesis.  相似文献   
254.
The possibility of H3+ playing a role as a sink for noble gases has been investigated in the case of Argon. Elaborate quantum methods (ab initio Coupled Cluster and density functional BH&HLYP levels of theory) have been shown to reproduce the rotational constants within 0.3% together with the only known IR frequency on the test case of Ar…D3+. Dissociation energies of (Ar)n…H3+ as a function of cluster size, i.e. 7.2 (n=1), 3.7 (n=2), 3.6 (n=3), 1.6 (n=4), 1.7 (n=5) kcal/mol, follow the pattern established experimentally for (Ar)n…H3+ and (H2)n…H3+ series. Rotational constants and harmonic frequencies of (Ar)n…H3+ (n=1-3) are presented.  相似文献   
255.
Abstract— Quantifying the peak temperatures achieved during metamorphism is critical for understanding the thermal histories of ordinary chondrite parent bodies. Various geothermometers have been used to estimate equilibration temperatures for chondrites of the highest metamorphic grade (type 6), but results are inconsistent and span hundreds of degrees. Because different geothermometers and calibration models were used with different meteorites, it is unclear whether variations in peak temperatures represent actual ranges of metamorphic conditions within type 6 chondrites or differences in model calibrations. We addressed this problem by performing twopyroxene geothermometry, using QUILF95, on the same type 6 chondrites for which peak temperatures were estimated using the plagioclase geothermometer (Nakamuta and Motomura 1999). We also calculated temperatures for published pyroxene analyses from other type 6 H, L, and LL chondrites to determine the most representative peak metamorphic temperatures for ordinary chondrites. Pyroxenes record a narrow, overlapping range of temperatures in H6 (865–926 °C), L6 (812–934 °C), and LL6 (874–945 °C) chondrites. Plagioclase temperature estimates are 96–179 °C lower than pyroxenes in the same type 6 meteorites. Plagioclase estimates may not reflect peak metamorphic temperatures because chondrule glass probably recrystallized to plagioclase prior to reaching the metamorphic peak. The average temperature for H, L, and LL chondrites (~900 °C), which agrees with previously published oxygen isotope geothermometry, is at least 50 °C lower than the peak temperatures used in current asteroid thermal evolution models. This difference may require minor adjustments to thermal model calculations.  相似文献   
256.
The hydrodynamic instability, which develops on the contact surface between two fluids, has great importance in astrophysical phenomena such as the inhomogeneous density distribution following a supernova event. In this event acceleration waves pass across a material interface and initiate and enhance unstable conditions in which small perturbations grow dramatically. In the present study, an experimental technique aimed at investigating the above-mentioned hydrodynamic instability is presented. The experimental investigation is based on a shock-tube apparatus by which a shock wave is generated and initiates the instability that develops on the contact surface between two gases. The flexibility of the system enables one to vary the initial shape of the contact surface, the shock-wave Mach number, and the density ratio across the contact surface. Three selected sets of shock-tube experiments are presented in order to demonstrate the system capabilities: (1) large-initial amplitudes with low-Mach-number incident shock waves; (2) small-initial amplitudes with moderate-Mach-number incident shock waves; and (3) shock bubble interaction. In the large-amplitude experiments a reduction of the initial velocity with respect to the linear growth prediction was measured. The results were compared to those predicted by a vorticity-deposition model and to previous experiments with moderate- and high-Mach number incident shock waves that were conducted by others. In this case, a reduction of the initial velocity was noted. However, at late times the growth rate had a 1/t behavior as in the small-amplitude low-Mach number case. In the small-amplitude moderate-Mach number shock experiments a reduction from the impulsive theory was noted at the late stages. The passage of a shock wave through a spherical bubble results in the formation of a vortex ring. Simple dimensional analysis shows that the circulation depends linearly on the speed of sound of the surrounding material and on the initial bubble radius.  相似文献   
257.
258.
Data from the Ion Mass Analyzer (IMA) sensor of the ASPERA-3 instrument suite on Mars Express have been analyzed to determine the mass composition of the escaping ion species at Mars. We have examined 77 different ion-beam events and we present the results in terms of flux ratios between the following ion species: CO+2/O+ and O+2/O+. The following ratios averaged over all events and energies were identified: CO+2/O+ = 0.2 and O+2/O+ = 0.9. The values measured are significantly higher, by a factor of 10 for O+2/O+, than a contemporary modeled ratio for the maximum fluxes which the martian ionosphere can supply. The most abundant ion species was found to be O+, followed by O+2 and CO+2. We estimate the loss of CO+2 to be by using the previous measurements of Phobos-2 in our calculations. The dependence of the ion ratios in relation to their energy ranges we studied, 0.3-3.0 keV, indicated that no clear correlation was found.  相似文献   
259.
This paper looks at the possibilities opened by reaction of NH with methyl radical. A general survey of the potential surface by ab initio Möller-Plesset (MP2) and density functional theory has been performed, including determination of transition states on the pathways considered and vibrational analysis of all stationary points. Energetical data have been obtained using coupled cluster molecular orbital methods (CCSD(T)). It is shown that HCN is not formed from these starting reactants, but that CH2NH, a possible precursor of tholins and of prebiotic compounds through hydration is the major product.  相似文献   
260.
We report the near-infrared (near-IR) identification of the likely counterpart to X1908+075, a highly absorbed Galactic X-ray source recently suspected to belong to the rare class of OB supergiant–neutron star binary systems. Our JHKs -band imaging of the field reveals the existence within the X-ray error boxes of a near-IR source consistent with an early-type star lying at   d ∼ 7 kpc  and suffering   AV ∼ 16 mag  of extinction, the latter value being in good agreement with the hydrogen column density derived from modelling of the X-ray spectrum. Our follow-up, near-IR spectroscopic observations confirm the nature of this candidate and lead to a late O-type supergiant classification, thereby supporting the identification of a new Galactic OB-supergiant X-ray binary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号