首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7702篇
  免费   204篇
  国内免费   310篇
测绘学   212篇
大气科学   604篇
地球物理   1598篇
地质学   2873篇
海洋学   636篇
天文学   1848篇
综合类   29篇
自然地理   416篇
  2023年   42篇
  2022年   52篇
  2021年   56篇
  2020年   66篇
  2019年   81篇
  2018年   233篇
  2017年   190篇
  2016年   274篇
  2015年   161篇
  2014年   258篇
  2013年   412篇
  2012年   237篇
  2011年   404篇
  2010年   286篇
  2009年   456篇
  2008年   357篇
  2007年   323篇
  2006年   335篇
  2005年   305篇
  2004年   289篇
  2003年   272篇
  2002年   250篇
  2001年   218篇
  2000年   205篇
  1999年   178篇
  1998年   168篇
  1997年   161篇
  1996年   154篇
  1995年   136篇
  1994年   114篇
  1993年   92篇
  1992年   78篇
  1991年   87篇
  1990年   77篇
  1989年   83篇
  1988年   59篇
  1987年   101篇
  1986年   64篇
  1985年   64篇
  1984年   69篇
  1983年   71篇
  1982年   72篇
  1981年   68篇
  1980年   53篇
  1979年   51篇
  1977年   48篇
  1976年   47篇
  1975年   35篇
  1974年   30篇
  1973年   41篇
排序方式: 共有8216条查询结果,搜索用时 218 毫秒
171.
Molar tooth (MT) structures are enigmatic, contorted millimetre‐ to decimetre‐long veins and spheroids of microcrystalline calcite that formed during very early diagenesis in Precambrian sediments. MT structures in the ca 2·6 Ga Monteville Formation are 600–800 Myr older than previously reported occurrences and establish that conditions necessary for MT genesis were met locally throughout much of the Precambrian. In the Monteville Formation, MT structures were formed shallow subtidally, extending to depths near storm wave base, in shale host sediments intercalated with storm‐generated carbonate sand lenses. They are filled with microcrystalline calcite and rare pyrite. Microcrystalline calcite identical to that in MT structures fills other pore space, including porosity between grains in carbonate sand lenses, moldic porosity in sand grains, sheet cracks in columnar stromatolites, and shallow cracks on sandy bedding planes. Relationships in the Monteville Formation demonstrate that microcrystalline CaCO3 precipitated in fluid‐filled cracks and pores; microcrystalline calcite characteristics, as well as the paucity of carbonate mud in host rocks, are inconsistent with injection of lime mud as the origin of MT structures. Locally, MT cracks were filled by detrital sediment before or during precipitation. Precipitation occurred in stages, and MT CaCO3 evolved from granular cores to a rigid mass of cores with overgrowths – allowing both plastic and brittle deformation of MT structures, as well as reworking of eroded MT structures as rigid clasts and lime mud. Crystal size distributions and morphology suggest that cores precipitated through nucleation, Ostwald ripening and size‐dependent crystal growth, whereas overgrowths formed during size‐independent crystal growth.  相似文献   
172.
The Quaternary Eburru volcanic complex in the south-central Kenya Rift consists of pantelleritic trachytes and pantellerites. The phenocryst assemblage in the trachytes is sanidine + fayalite + ferrohedenbergite + aenigmatite ± quartz ± ilmenite ± magnetite ± pyrrhotite ± pyrite. In the pantellerites, the assemblage is sanidine + quartz + ferrohedenbergite + fayalite + aenigmatite + ferrorichterite + pyrrhotite ± apatite, although fayalite, ferrohedenbergite and ilmenite are absent from more evolved rocks (e.g. with SiO2 > 71%). QUILF temperature calculations for the trachytes range from 709 to 793 °C and for the pantellerites 668–708 °C, the latter temperatures being among the lowest recorded for peralkaline silicic magmas. The QUILF thermobarometer demonstrates that the Eburru magmas crystallized at relatively low oxidation states (ΔFMQ + 0.5 to − 1.6) for both trachytes and pantellerites. The trachytes and pantellerites evolved along separate liquid lines of descent, the trachytes possibly deriving from a more mafic parent by fractional crystallization and the pantellerites from extreme fractionation of comenditic magmas.  相似文献   
173.
The vibrational spectrum of Mg2SiO4 olivine was calculated at the Γ point by using the periodic ab initio CRYSTAL program. An all electron localized Gaussian-type basis set and the B3LYP Hamiltonian were employed. The full set of frequencies (35 IR active, 36 Raman active, 10 “silent” modes) was computed and compared to experimental data from different sources (four for IR and four for Raman). A generally good agreement is observed with experiment (the mean absolute difference ranging from 7 to 10 cm−1 for the various sets), when some of the experimental frequencies, whose attribution is uncertain or appears to be affected by large errors, are not taken into account. A small number of observed peaks are not consistent with calculated frequencies, and a few theoretical peaks do not correspond to measured values. The implications are discussed in detail. The full set of modes are characterized using different tools, namely isotopic substitution, direct inspection of the eigenvectors and graphical representation, so as to obtain a consistent mode assignment.  相似文献   
174.
Petrological, geochemical, and Nd isotopic analyses have been carried out on rock samples from the Rainbow vent field to assess the evolution of the hydrothermal system. The Rainbow vent field is an ultramafic-hosted hydrothermal system located on the Mid-Atlantic Ridge characterized by vigorous high-temperature venting (∼365°C) and unique chemical composition of fluids: high chlorinity, low pH and very high Fe, and rare earth element (REE) contents (Douville et al., Chemical Geology 184:37–48, 2002). Serpentinization has occurred under a low-temperature (<270°C) retrograde regime, later overprinted by a higher temperature sulfide mineralization event. Retrograde serpentinization reactions alone cannot reproduce the reported heat and specific chemical features of Rainbow hydrothermal fluids. The following units were identified within the deposit: (1) nonmineralized serpentinite, (2) mineralized serpentinite—stockwork, (3) steatite, (4) semimassive sulfides, and (5) massive sulfides, which include Cu-rich massive sulfides (up to 28wt% Cu) and Zn-rich massive sulfide chimneys (up to 5wt% Zn). Sulfide mineralization has produced significant changes in the sulfide-bearing rocks including enrichment in transition metals (Cu, Zn, Fe, and Co) and light REE, increase in the Co/Ni ratios comparable to those of mafic Cu-rich volcanic-hosted massive sulfide deposits and different 143Nd/144Nd isotope ratios. Vent fluid chemistry data are indicative of acidic, reducing, and high temperature conditions at the subseafloor reaction zone where fluids undergo phase separation most likely under subcritical conditions (boiling). An explanation for the high chlorinity is not straightforward unless mixing with high salinity brine or direct contribution from a magmatic Cl-rich aqueous fluid is considered. This study adds new data, which, combined with the current knowledge of the Rainbow vent field, brings compelling evidence for the presence, at depth, of a magmatic body, most likely gabbroic, which provides heat and metals to the system. Co/Ni ratios proved to be good tools used to discriminate between rock units, degree of sulfide mineralization, and positioning within the hydrothermal system. Deeper units have Co/Ni <1 and subsurface and surface units have Co/Ni >1.  相似文献   
175.
The equation of state of MgGeO3 perovskite was determined between 25 and 66 GPa using synchrotron X-ray diffraction with the laser-heated diamond anvil cell. The data were fit to a third-order Birch–Murnaghan equation of state and yielded a zero-pressure volume (V 0) of 182.2 ± 0.3 Å3 and bulk modulus (K 0) of 229 ± 3 GPa, with the pressure derivative (K= (?K 0/?P) T ) fixed at 3.7. Differential stresses were evaluated using lattice strain theory and found to be typically less than about 1.5 GPa. Theoretical calculations were also carried out using density functional theory from 0 to 205 GPa. The equation of state parameters from theory (V 0 = 180.2 Å3, K 0 = 221.3 GPa, and K0 = 3.90) are in agreement with experiment, although theoretically calculated volumes are systematically lower than experiment. The properties of the perovskite phase were compared to MgGeO3 post-perovskite phase near the observed phase transition pressure (~65 GPa). Across the transition, the density increased by 2.0(0.7)%. This is in excellent agreement with the theoretically determined density change of 1.9%; however both values are larger than those for the (Mg,Fe)SiO3 phase transition. The bulk sound velocity change across the transition is small and is likely to be negative [?0.5(1.6)% from experiment and ?1.2% from theory]. These results are similar to previous findings for the (Mg,Fe)SiO3 system. A linearized Birch–Murnaghan equation of state fit to each axis yielded zero-pressure compressibilities of 0.0022, 0.0009, and 0.0016 GPa?1 for the a, b, and c axis, respectively. Magnesium germanate appears to be a good analog system for studying the properties of the perovskite and post-perovskite phases in silicates.  相似文献   
176.
Wave-cut pluvial shoreline scarps are ideal natural experiments in hillslope evolution because the ages of these scarps are often precisely known and because they form with a range of heights, alluvial textures, and microclimates (i.e., orientation). Previous work using midpoint-slope methods on pluvial scarps in the Basin and Range concluded that scarp evolution is nonlinear and microclimatically controlled. The purpose of this study was to further examine the influence of scarp height, texture and microclimate in an attempt to calibrate a nonlinear model of scarp evolution. To do this, over 150 profiles of the Bonneville shoreline in the adjacent Snake and Tule Valleys, west-central Utah were collected and analyzed by fitting the entire scarp profile to diffusion-equation solutions, taking into account uncertainty in the initial scarp angle. In contrast to previous studies, this analysis revealed no evidence for nonlinearity or microclimatic control. To understand the reason for this discrepancy, we undertook a systematic study of the accuracy of each scarp-analysis method. The midpoint-slope-inverse method was found to yield biased results, with systematically higher diffusion ages for young, tall scarps. The slope-offset method is unbiased but has limited resolution because it requires many scarp profiles to yield a single diffusion age. A method that incorporates the full scarp profile and uncertainty in the initial scarp angle was found to be the most accurate technique. The application of the full-scarp method to the Bonneville shoreline supports the use of a linear diffusion model for scarps up to 20 m in height. Scarp orientation had no discernable effect on diffusivity values. Soil texture was found to have a weak but significant inverse relationship with diffusivity values.  相似文献   
177.
178.
Twenty-nine water samples were collected from different river channels of the Pearl River Delta Economic Zone, China. An inductively coupled plasma-mass spectromonitor (ICP-MS) was used to measure concentrations of the trace elements in these samples. The results suggest that the average concentrations of rare earth elements in river water show an increasing trend from the West River, the North River, the rivers of the Pearl River Delta, and the Shenzhen River to the East River. Relatively high concentrations of heavy metals appear in the East River, the rivers of the Pearl River Delta and the Shenzhen River, while the West River and the North River have relatively low heavy metal concentrations. Trace element concentrations in samples collected near urban or industrial areas are much higher than those of samples collected from distant areas, away from urban and industrial areas. After natural conditions, human activities have significant influence on the trace element concentrations in river water. This trace element concentration’s spatial distribution in the river water from the Pearl River Delta Economic Zone is actually an integrated effect of natural conditions and human activity.  相似文献   
179.
High-pressure and temperature experiments (28–62 GPa, and 1,490–2,000 K, corresponding to approximately 770–1,500 km depth in the mantle) have been conducted on a MgCO3 + SiO2 mixture using a laser-heated diamond anvil cell combined with analytical transmission electron microscope observation of the product phases to constrain the fate of carbonates carried on the subducting basalt into the lower mantle. At these conditions, the decarbonation reaction MgCO3 (magnesite) + SiO2 (stishovite) → MgSiO3 (perovskite) + CO2 (solid) has been recognized. This indicates that above reaction takes place as a candidate for decarbonation of the carbonated subducting mid ocean ridge basalts in the Earth’s lower mantle.  相似文献   
180.
Using entropy theory, a methodology was developed for the evaluation and redesign of groundwater quality monitoring wells in the Gaza Strip in Palestine. Essential to the methodology is the development of a Transinformation Model (TM) which yields the amount of information transfer and the dependency between the wells as a function of distance. The TM parameters, such as the minimum transinformation and the range, were employed for evaluating the network which revealed that most of the distances between wells were less than the range. It also indicated that a high percentage of redundant information existed in the network. Therefore, the network was reduced by superimposing a square pattern over the monitored area and selecting one well per square block in a stratified pattern. The methodology was tested using the chloride data collected from 1972–2000 from 417 groundwater quality monitoring wells in the Gaza Strip. The number of the groundwater quality monitoring wells in the Gaza Strip was reduced by 53%, while there was 26% redundant information based on the minimum existing distance between wells. This methodology is meant to help monitor the groundwater quality (salinity) in the Gaza Strip.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号