首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26744篇
  免费   569篇
  国内免费   1493篇
测绘学   1532篇
大气科学   2415篇
地球物理   5158篇
地质学   12872篇
海洋学   1246篇
天文学   1718篇
综合类   2380篇
自然地理   1485篇
  2024年   16篇
  2023年   44篇
  2022年   126篇
  2021年   121篇
  2020年   120篇
  2019年   125篇
  2018年   4880篇
  2017年   4154篇
  2016年   2692篇
  2015年   349篇
  2014年   239篇
  2013年   198篇
  2012年   1127篇
  2011年   2866篇
  2010年   2158篇
  2009年   2457篇
  2008年   1994篇
  2007年   2478篇
  2006年   135篇
  2005年   264篇
  2004年   481篇
  2003年   478篇
  2002年   305篇
  2001年   113篇
  2000年   148篇
  1999年   101篇
  1998年   90篇
  1997年   74篇
  1996年   90篇
  1995年   61篇
  1994年   62篇
  1993年   47篇
  1992年   31篇
  1991年   21篇
  1990年   24篇
  1989年   20篇
  1988年   17篇
  1987年   13篇
  1986年   6篇
  1985年   8篇
  1984年   4篇
  1982年   5篇
  1981年   26篇
  1980年   22篇
  1978年   1篇
  1976年   8篇
  1975年   2篇
  1973年   1篇
  1936年   1篇
  1933年   1篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
51.
勘探区地处毛乌素沙漠西南边缘,表层多为干燥疏松的沙丘和黄土;浅层为沙土、卵石、砾石层,大部分地段不含水,均为松散沉积物。区内断层和褶皱发育,煤层埋藏深度与产状变化较大。针对该区表、浅层和深层复杂的地震地质条件,通过不断优化三维地震勘探设计,最终确定了野外数据采集观测系统及激发与接收参数,并在数据处理中,选择了合适的处理技术、处理参数及处理流程,获得了信噪比与分辨率较高的三维数据体,较好的完成了地质勘探任务。  相似文献   
52.
中国东部植被NDVI对气温和降水的时空响应(英文)   总被引:4,自引:4,他引:4  
Temporal and spatial response characteristics of vegetation NDVI to the variation of temperature and precipitation in the whole year,spring,summer and autumn was analyzed from April 1998 to March 2008 based on the SPOT VGT-NDVI data and daily temperature and precipitation data from 205 meteorological stations in eastern China.The results indicate that as a whole,the response of vegetation NDVI to the variation of temperature is more pronounced than that of precipitation in eastern China.Vegetation NDVI maxi...  相似文献   
53.
Surface displacements and gravity changes due to volcanic sources are influenced by medium properties. We investigate topographic, elastic and self-gravitation interaction in order to outline the major factors that are significant in data modelling. While elastic-gravitational models can provide a suitable approximation to problems of volcanic loading in areas where topographic relief is negligible, for prominent volcanoes the rough topography could affect deformation and gravity changes to a greater extent than self-gravitation. This fact requires the selection, depending on local relief, of a suitable model for use in the interpretation of surface precursors of volcanic activity. We use the three-dimensional Indirect Boundary Element Method to examine the effects of topography on deformation and gravity changes in models of magma chamber inflation/deflation. Topography has a significant effect on predicted surface deformation and gravity changes. Both the magnitude and pattern of the geodetic signals are significantly different compared to half-space solutions. Thus, failure to account for topographic effects in areas of prominent relief can bias the estimate of volcanic source parameters, since the magnitude and pattern of deformation and gravity changes depend on such effects.  相似文献   
54.
The broadband diffuse radiation method is improved to retrieve the aerosol refractive index imaginary part (AIP) and broadband (400-1000 nm mean) single scattering albedo (SSA). In this method, four sets of SSA selection criteria are proposed for quality control. The method is used to retrieve AIP, SSA and absorptive optical thickness (AbOT) from routine hourly-exposed pyrheliometer and paranometer measurements over 11 sites (meteorological observatories) in China during 1998-2003. Apart from one suburban site (Ejin Qi), the other urban sites are all located around big or medium cities. As shown in the retrieval results, annual mean SSA during 1998-2003 changes from 0.941 (Wuhan) to 0.849 (Lanzhou), and AIP from 0.0054 to 0.0203. The 11-site average annual mean SSA and AIP are 0.898 and 0.0119, respectively. SSA during winter is smaller for most sites. There is an evidently positive correlation between SSA and aerosol optical thickness (AOT) for all sites. There is also a positive correlation between SSA and relative humidity for most sites, but a negative correlation for a few sites, such as Kashi and ǚrǚmqi in Northwest China.  相似文献   
55.
The climate–population relationship has long been conceived. Although the topic has been repeatedly investigated, most of the related works are Eurocentric or qualitative. Consequently, the relationship between climate and population remains ambiguous. In this study, fine-grained temperature reconstructions and historical population data sets have been employed to statistically test a hypothesized relationship between temperature change and population growth (i.e., cooling associated with below average population growth) in China over the past millennium. The important results were: (1) Long-term temperature change significantly determined the population growth dynamics of China. However, spatial variation existed, whilst population growth in Central China was shown to be responsive to both long- and short-term temperature changes; in marginal areas, population growth was only sensitive to short-term temperature fluctuations. (2) Temporally, the temperature–population relationship was obscured in some periods, which was attributable to the factors of drought and social buffers. In summary, a temperature–population relationship was mediated by geographic factors, the aridity threshold, and social factors. Given the upcoming threat posed by climate change to human societies, this study seeks to improve our knowledge and understanding of the climate–society relationship.  相似文献   
56.
Summary A lack of information for surface water vapor pressure (WVP) represents a major impediment to model-assisted ecosystem analysis for understanding plant-environment interactions or for projecting biospheric responses to global climate change. This paper reports on a generic algorithm that captures global variation in monthly WVP. The algorithm solves WVP in terms of reduction from saturation WVP as a negative exponential function of potential evapotranspiration; the reduction rate per unit potential evapotranspiration in turn varies with monthly precipitation and a series of variables that distinguish local climate regimes. Data input to the algorithm is limited to monthly air temperature and precipitation, plus latitude, longitude and elevation. The algorithm is specified through regression fitting to monthly climate normal data from 852 stations around the world. It accounts for 96% of the variance in the WVP data, with a root mean square error of 0.17 kPa, or 12% of the data mean. The algorithm closely reproduces five-year sequential monthly WVP data for each of five selected United States locations representitative of diverse climate regimes: the average error generally falls within ±12% of the data mean, and the absolute error within ±0.2 kPa. Its projections also compare favorably against the WVP output from the General Circulation Models for temperature and precipitation conditions under the scenario of a doubled atmospheric carbon-dioxide concentration: the two fall within ±10% of each other for 75% of a total 264 data cases, or within ±20% for 94% of the cases. These statistics suggest that the spatially-based algorithm is useful for projecting temporal variation in WVP, and for extrapolative applications beyond the fluctuation range of present climate. Received March 4, 1999  相似文献   
57.
UV attenuation in the cloudy atmosphere   总被引:1,自引:0,他引:1  
Ultraviolet (UV) energy absorption plays a very important role in the Earth–atmosphere system. Based on observational data for Beijing, we suggest that some atmospheric constituents utilize or transfer UV energy in chemical and photochemical (C&P) reactions, in addition to those which absorb UV energy directly. These constituents are primarily volatile organic compounds (VOCs) emitted from both vegetative and anthropogenic sources. The total UV energy loss in the cloudy atmosphere for Beijing in 1990 was 78.9 Wm−2. This attenuation was caused by ozone (48.3 Wm−2), other compounds in the atmosphere (26.6 Wm−2) and a scattering factor (4.0 Wm−2). Our results for a cloudy atmosphere in the Beijing area show that the absorption due to these other compounds occurs largely through the mediation of water vapor. This fraction of energy loss has not been fully accounted for in previous models. Observations and previous models results suggest that 1) a cloudy atmosphere absorbs 25∼30 Wm−2 more solar shortwave radiation than models predict; and 2) aerosols can significantly decrease the downward mean UV-visible radiation and the absorbed solar radiation at the surface by up to 28 and 23 Wm−2, respectively. Thus, quantitative study of UV and visible absorption by atmospheric constituents involved in homogeneous and heterogeneous C&P reactions is important for atmospheric models.  相似文献   
58.
A method is proposed for estimating the surface-layer depth \((z_s)\) and the friction velocity \((u_*)\) as a function of stability (here quantified by the Obukhov length, L) over the complete range of unstable flow regimes. This method extends that developed previously for stable conditions by Argaín et al. (Boundary-Layer Meteorol 130:15–28, 2009), but uses a qualitatively different approach. The method is specifically used to calculate the fractional speed-up \((\varDelta S)\) in flow over a ridge, although it is suitable for more general boundary-layer applications. The behaviour of \(z_s \left( L\right) \) and \(u_*\left( L\right) \) as a function of L is indirectly assessed via calculation of \(\varDelta S\left( L\right) \) using the linear model of Hunt et al. (Q J R Meteorol Soc 29:16–26, 1988) and its comparison with the field measurements reported in Coppin et al. (Boundary-Layer Meteorol 69:173–199, 1994) and with numerical simulations carried out using a non-linear numerical model, FLEX. The behaviour of \(\varDelta S\) estimated from the linear model is clearly improved when \(u_*\) is calculated using the method proposed here, confirming the importance of accounting for the dependences of \(z_s\left( L \right) \) and \(u_*\left( L \right) \) on L to better represent processes in the unstable boundary layer.  相似文献   
59.
Characteristics of carbonyl compounds in ambient air of Shanghai,China   总被引:3,自引:0,他引:3  
The levels of carbonyl compounds in Shanghai ambient air were measured in five periods from January 2007 to October 2007 (covering winter, high-air-pollution days, spring, summer and autumn). A total of 114 samples were collected and eighteen carbonyls were identified. Formaldehyde, acetaldehyde and acetone were the most abundant carbonyls and their mean concentrations of 19.40 ± 12.00, 15.92 ± 12.07 and 11.86 ± 7.04 μg m−3 respectively, in the daytime for five sampling periods. Formaldehyde and acetaldehyde showed similar diurnal profiles with peak mixing ratios in the morning and early afternoon during the daytime. Their mean concentrations were highest in summer and lowest in winter. Acetone showed reversed seasonal variation. The high molecular weight (HMW, ≥C5) carbonyls also showed obvious diurnal variations with higher concentrations in the daytime in summer and autumn, while they were all not detected in winter. Formaldehyde and acetaldehyde played an important role in removing OH radicals in the atmosphere, but the contribution of acetone was below 1%. The carbonyls levels in high-air-pollution days were reported. More carbonyl species with higher concentrations were found in high-air-pollution days than in spring. These carbonyls were transported with other pollutants from north and northwest in March 27 to April 2, 2007 and then mixed with local sources. Comparing with Beijing and Guangzhou, the concentrations of formaldehyde and acetaldehyde in Shanghai were the highest, which indicated that the air pollution in Shanghai was even worse than expected.  相似文献   
60.
General purpose Computational Fluid Dynamics (CFD) solvers are frequently used in small-scale urban pollution dispersion simulations without a large extent of ver- tical flow. Vertical flow, however, plays an important role in the formation of local breezes, such as urban heat island induced breezes that have great significance in the ventilation of large cities. The effects of atmospheric stratification, anelasticity and Coriolis force must be taken into account in such simulations. We introduce a general method for adapting pressure based CFD solvers to atmospheric flow simulations in order to take advantage of their high flexibility in geometrical modelling and meshing. Compressibility and thermal stratification effects are taken into account by utilizing a novel system of transformations of the field variables and by adding consequential source terms to the model equations of incompressible flow. Phenomena involving mesoscale to microscale coupled effects can be analyzed without model nesting, applying only local grid refinement of an arbitrary level. Elements of the method are validated against an analytical solution, results of a reference calculation, and a laboratory scale urban heat island circulation experiment. The new approach can be applied with benefits to several areas of application. Inclusion of the moisture transport phenomena and the surface energy balance are important further steps towards the practical application of the method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号