首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27021篇
  免费   712篇
  国内免费   1700篇
测绘学   1542篇
大气科学   2739篇
地球物理   5086篇
地质学   13040篇
海洋学   1271篇
天文学   1769篇
综合类   2429篇
自然地理   1557篇
  2024年   14篇
  2023年   76篇
  2022年   152篇
  2021年   132篇
  2020年   97篇
  2019年   134篇
  2018年   4857篇
  2017年   4130篇
  2016年   2703篇
  2015年   366篇
  2014年   270篇
  2013年   206篇
  2012年   1140篇
  2011年   2869篇
  2010年   2170篇
  2009年   2436篇
  2008年   2010篇
  2007年   2472篇
  2006年   152篇
  2005年   290篇
  2004年   467篇
  2003年   461篇
  2002年   314篇
  2001年   125篇
  2000年   143篇
  1999年   164篇
  1998年   150篇
  1997年   140篇
  1996年   126篇
  1995年   129篇
  1994年   106篇
  1993年   75篇
  1992年   58篇
  1991年   58篇
  1990年   40篇
  1989年   35篇
  1988年   30篇
  1987年   18篇
  1986年   15篇
  1985年   16篇
  1984年   11篇
  1983年   9篇
  1982年   5篇
  1981年   27篇
  1980年   23篇
  1978年   1篇
  1976年   6篇
  1974年   1篇
  1962年   2篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
A GIS-implemented, deterministic approach for the automated spatial evaluation of geometrical and kinematical properties of rock slope terrains is presented. Based on spatially distributed directional information on planar geological fabrics and DEM-derived topographic attribute data, the internal geometry of rock slopes can be characterized on a grid cell basis. For such computations, different approaches for the analysis and regionalization of available structural directional information applicable in specific tectonic settings are demonstrated and implemented in a GIS environment. Simple kinematical testing procedures based on feasibility criteria can be conducted on a pixel basis to determine which failure mechanisms are likely to occur at particular terrain locations. In combination with hydraulic and strength data on geological discontinuities, scenario-based rock slope stability evaluations can be performed. For conceptual investigations on rock slope failure processes, a GIS-based specification tool for a 2-D distinct element code (UDEC) was designed to operate with the GIS-encoded spatially distributed rock slope data. The concepts of the proposed methodology for rock slope hazard assessments are demonstrated at three different test sites in Germany.  相似文献   
22.
Qualitative locations describe spatial objects by relating the spatial objects to a frame of reference (e.g. a regional partition in this study) with qualitative relations. Existing models only formalize spatial objects, frames of reference, and their relations at one scale, thus limiting their applicability in representing location changes of spatial objects across scales. A topology‐based, multi‐scale qualitative location model is proposed to represent the associations of multiple representations of the same objects with respect to the frames of reference at different levels. Multi‐scale regional partitions are first presented to be the frames of reference at multiple levels of scale. Multi‐scale locations are then formalized to relate multiple representations of the same objects to the multiple frames of reference by topological relations. Since spatial objects, frames of reference, and topological relations in qualitative locations are scale dependent, scale transformation approaches are presented to derive possible coarse locations from detailed locations by incorporating polygon merging, polygon‐to‐line and polygon‐to‐point operators.  相似文献   
23.
In an elementary approach every geometrical height difference between the staff points of a levelling line should have a corresponding average g value for the determination of potential difference in the Earth’s gravity field. In practice this condition requires as many gravity data as the number of staff points if linear variation of g is assumed between them. Because of the expensive fieldwork, the necessary data should be supplied from different sources. This study proposes an alternative solution, which is proved at a test bed located in the Mecsek Mountains, Southwest Hungary, where a detailed gravity survey, as dense as the staff point density (~1 point/34 m), is available along a 4.3-km-long levelling line. In the first part of the paper the effect of point density of gravity data on the accuracy of potential difference is investigated. The average g value is simply derived from two neighbouring g measurements along the levelling line, which are incrementally decimated in the consecutive turns of processing. The results show that the error of the potential difference between the endpoints of the line exceeds 0.1 mm in terms of length unit if the sampling distance is greater than 2 km. Thereafter, a suitable method for the densification of the decimated g measurements is provided. It is based on forward gravity modelling utilising a high-resolution digital terrain model, the normal gravity and the complete Bouguer anomalies. The test shows that the error is only in the order of 10−3mm even if the sampling distance of g measurements is 4 km. As a component of the error sources of levelling, the ambiguity of the levelled height difference which is the Euclidean distance between the inclined equipotential surfaces is also investigated. Although its effect accumulated along the test line is almost zero, it reaches 0.15 mm in a 1-km-long intermediate section of the line.  相似文献   
24.
Most satellites in a low-Earth orbit (LEO) with demanding requirements on precise orbit determination (POD) are equipped with on-board receivers to collect the observations from Global Navigation Satellite systems (GNSS), such as the Global Positioning System (GPS). Limiting factors for LEO POD are nowadays mainly encountered with the modeling of the carrier phase observations, where a precise knowledge of the phase center location of the GNSS antennas is a prerequisite for high-precision orbit analyses. Since 5 November 2006 (GPS week 1400), absolute instead of relative values for the phase center location of GNSS receiver and transmitter antennas are adopted in the processing standards of the International GNSS Service (IGS). The absolute phase center modeling is based on robot calibrations for a number of terrestrial receiver antennas, whereas compatible antenna models were subsequently derived for the remaining terrestrial receiver antennas by conversion (from relative corrections), and for the GNSS transmitter antennas by estimation. However, consistent receiver antenna models for space missions such as GRACE and TerraSAR-X, which are equipped with non-geodetic receiver antennas, are only available since a short time from robot calibrations. We use GPS data of the aforementioned LEOs of the year 2007 together with the absolute antenna modeling to assess the presently achieved accuracy from state-of-the-art reduced-dynamic LEO POD strategies for absolute and relative navigation. Near-field multipath and cross-talk with active GPS occultation antennas turn out to be important and significant sources for systematic carrier phase measurement errors that are encountered in the actual spacecraft environments. We assess different methodologies for the in-flight determination of empirical phase pattern corrections for LEO receiver antennas and discuss their impact on POD. By means of independent K-band measurements, we show that zero-difference GRACE orbits can be significantly improved from about 10 to 6 mm K-band standard deviation when taking empirical phase corrections into account, and assess the impact of the corrections on precise baseline estimates and further applications such as gravity field recovery from kinematic LEO positions.  相似文献   
25.
Many regions around the world require improved gravimetric data bases to support very accurate geoid modeling for the modernization of height systems using GPS. We present a simple yet effective method to assess gravity data requirements, particularly the necessary resolution, for a desired precision in geoid computation. The approach is based on simulating high-resolution gravimetry using a topography-correlated model that is adjusted to be consistent with an existing network of gravity data. Analysis of these adjusted, simulated data through Stokes’s integral indicates where existing gravity data must be supplemented by new surveys in order to achieve an acceptable level of omission error in the geoid undulation. The simulated model can equally be used to analyze commission error, as well as model error and data inconsistencies to a limited extent. The proposed method is applied to South Korea and shows clearly where existing gravity data are too scarce for precise geoid computation.  相似文献   
26.
A three-step hierarchical Semi Automated Empirical Methane Emission Model (SEMEM) has been used to estimate methane emission from wetlands and waterlogged areas in India using Moderate Resolution Imagine Spectroradiometer (MODIS) sensor data onboard Terra satellite. Wetland Surface Temperature (WST), methane emission fluxes and wetland extent have been incorporated as parameters in order to model the methane emission. Analysis of monthly MODIS data covering the whole of India from November 2004 to April 2006 was carried out and monthly methane emissions have been estimated. Interpolation techniques were adopted to fill the data gaps due to cloudy conditions during the monsoon period. AutoRegressive Integrated Moving Average (ARIMA) model has been fitted to estimate the emitted methane for the months of May 2006 to August 2006 using SPSS software.  相似文献   
27.
28.
Geo-visualization concept has been used for positioning water harvesting structures in Varekhadi watershed consisting of 26 mini watersheds, falling in Lower Tapi Basin (LTB), Surat district, Gujarat state. For prioritization of the mini watersheds, morphometric analysis was utilized by using the linear parameters such as bifurcation ratio (Rb), drainage density (Dd), stream frequency (Fu), texture ratio (T), length of overland flow (Lo) and the shape parameter such as form factor (Rf), shape factor (Bs), elongation ratio (Re), compactness constant (Cc) and circularity ratio (Rc). The different prioritization ranks were assigned after evaluation of the compound factor. 3 Dimensional (3D) Elevation Model (DEM) from Shuttle Radar Topography Mission (SRTM) and DEM from topo contour were analyzed in ArcScene 9.1 and the fly tool was utilized for the Geo-visualization of Varekhadi mini watersheds as per the priority ranks. Combining this with soil map and slope map, the best feasibility of positioning check dams in mini-watershed no. 1, 5 and 24 has been proposed, after validation of the sites.  相似文献   
29.
Taking China as the region for test the potential of the new satellite gravity technique, satelliteto-satellite tracking for improving the accuracy of regional gravity field model is studied. With WDM94 as reference, the gravity anomaly residuals of three models, the latest two GRACE global gravity field model (EIGEN_GRACE02S, GGM02S) and EGM96, are computed and compared. The causes for the differences among the residuals of the three models are discussed. The comparison between the residuals shows that in the selected region, EIGEN_GRACE02S or GGM02S is better than EGM96 in lower degree part (less than 110 degree). Additionally, through the analysis of the model gravity anomaly residuals, it is found that some systematic errors with periodical properties exist in the higher degree part of EIGEN and GGM models, the results can also be taken as references in the validation of the SST gravity data.  相似文献   
30.
Interferometric Synthetic Aperture Radar (InSAR), nowadays, is a precise technique for monitoring and detecting ground deformation at a millimetric level over large areas using multi-temporal SAR images. Persistent Scatterer Interferometric SAR (PSInSAR), an advanced version of InSAR, is an effective tool for measuring ground deformation using temporally stable reference points or persistent scatterers. We have applied both PSInSAR and Small Baseline Subset (SBAS) methods, based on the spatial correlation of interferometric phase, to estimate the ground deformation and time-series analysis. In this study, we select Las Vegas, Nevada, USA as our test area to detect the ground deformation along satellite line-of-sight (LOS) during November 1992–September 2000 using 44 C-band SAR images of the European Remote Sensing (ERS-1 and ERS-2) satellites. We observe the ground displacement rate of Las Vegas is in the range of ?19 to 8 mm/year in the same period. We also cross-compare PSInSAR and SBAS using mean LOS velocity and time-series. The comparison shows a correlation coefficient of 0.9467 in the case of mean LOS velocity. Along this study, we validate the ground deformation results from the satellite with the ground water depth of Las Vegas using time-series analysis, and the InSAR measurements show similar patterns with ground water data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号