首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8072篇
  免费   1281篇
  国内免费   1305篇
测绘学   550篇
大气科学   1435篇
地球物理   2558篇
地质学   3774篇
海洋学   751篇
天文学   514篇
综合类   460篇
自然地理   616篇
  2024年   23篇
  2023年   89篇
  2022年   204篇
  2021年   266篇
  2020年   206篇
  2019年   239篇
  2018年   671篇
  2017年   554篇
  2016年   451篇
  2015年   325篇
  2014年   291篇
  2013年   308篇
  2012年   861篇
  2011年   624篇
  2010年   324篇
  2009年   298篇
  2008年   286篇
  2007年   240篇
  2006年   283篇
  2005年   942篇
  2004年   962篇
  2003年   718篇
  2002年   263篇
  2001年   169篇
  2000年   136篇
  1999年   128篇
  1998年   86篇
  1997年   107篇
  1996年   118篇
  1995年   81篇
  1994年   72篇
  1993年   52篇
  1992年   43篇
  1991年   42篇
  1990年   32篇
  1989年   34篇
  1988年   23篇
  1987年   19篇
  1986年   9篇
  1985年   4篇
  1984年   7篇
  1983年   6篇
  1982年   9篇
  1981年   4篇
  1980年   5篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1965年   3篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
We present an analysis of the Hipparcos photometry of the contact binary systems UX Ret and CN Hyi. The Wilson-Devinney code is employed to model the V band light curve for several fixed values of the mass ratio. From the quality-of-fit of the different solutions a final solution is derived for each system. Absolute values of the system are derived using the parallax data from the Hipparcos catalog. Analysis of the V band photometry of two stars (EL Aqr and FN Cam) with spectroscopically known mass ratios is also provided as a validation for the methods adopted for this study.  相似文献   
982.
In this article the charged analogues of recently derived Buchdahl’s type fluid spheres have been obtained by considering a particular form of electric field intensity. In this process, Einstein–Maxwell field equations yield eight different classes of solutions, joining smoothly with the exterior Reissner–Nordstrom metric at the pressure free intersurface. Out of the eight solutions only seven could be utilized to represent superdense star models with ultrahigh surface density of the order 2×1014 gm cm−3. The maximum masses of the star models were found to be 8.223931MΘ and 8.460857MΘ subject to strong and weak energy conditions, respectively, which are much higher than the maximum masses 3.82MΘ and 4.57MΘ allowed in the neutral cases. The velocity of sound seen to be less than that of light throughout the star models.  相似文献   
983.
Determination of biosphere–atmosphere exchanges requires accurate quantification of the turbulent fluxes of energy and of a wide variety of trace gases. Relaxed Eddy Accumulation (REA) is a method that has received increasing attention in recent years, because it does not require any rapid sensor for the scalar measurements as the Eddy Correlation method (EC) does. As in all micrometeorological studies, REA measurements in the atmospheric surface layer are valid under some restrictive conditions so as to be representative of a specific ecosystem. These conditions are the homogeneity of the underlying surface, stationary and horizontally homogeneous turbulence. For most experiments these conditions are not fully satisfied. Data uncertainties can also be related to not fulfilling the method principles or to the technical characteristics of the REA system itself. In order to assess REA measurement quality, a methodological approach of data analysis is developed in this study. This methodological analysis is based on the establishment of criteria for data quality control. A set of them, deduced from the mean and turbulent flow, are called ‘Dynamic criteria’ and are designated to control the stationarity and homogeneity of the w function and the validation of Taylor’s hypothesis. A second set (‘REA operational criteria’) is designed to check the sampling process and, more precisely, the homogeneity of the negative and positive selection process throughout the sampling period. A third set of criteria (‘Chemical scalar criteria’) concerns the scalar measurements. Results of the criteria application to data measured at two different experimental sites are also presented. Cut-off limits of criteria are defined based on their statistical distribution and shown to be specific for each site. Strictness of each criterion, defined by the percentage of flagged samples, is analysed in conjunction with the meteorological conditions and atmospheric stability. It is found that flagged samples mainly correspond to neutral and stable nocturnal conditions. During daytime, nearly free convection conditions can also yield poor quality data.  相似文献   
984.
We investigate the flow over Arctic leads using a mesoscale numerical model, typical of both summer and winter, under idealised conditions. We find that Arctic leads may be the source of standing atmospheric internal gravity waves during both seasons. The summertime wave may be compared with the wave generated by a small ridge, though with the phase reversed. The mechanism for exciting the wave is found to be the internal boundary layer developing due to horizontal variations in surface temperature and roughness length. During the more exploratory wintertime simulations, with substantial temperature difference between the lead and the ice surface, we find that secondary circulations and intermittent wave-breaking may occur. The effects of the lead appear far downstream.  相似文献   
985.
Two parameterisation schemes for the turbulent surface fluxes and drag coefficients over the Arctic marginal sea-ice zone (MIZ) are (further) developed, and their results are compared with each other. Although the schemes are based on different principles (flux averaging and parameter averaging), the resulting drag coefficients differ only slightly in the case of neutral and stable stratification. For unstable stratification and sea-ice conditions being typical for the north-eastern Fram Strait, the drag coefficients resulting from the parameter-averaging concept are 5–10% larger than those of the flux-averaging concept. At a sea-ice concentration of 45%, the parameter-averaging method overestimates the heat fluxes by a factor of 1.2. An inclusion in the schemes of form drag caused by floe edges and ridges has a much larger effect on the drag coefficient, and on the momentum fluxes, than the choice between the parameter-averaging or flux-averaging methods. Based on sensitivity studies with the flux-averaging scheme, a simple formula for the effective drag coefficient above the Arctic MIZ is derived. It reduces the computational costs of the more complex parameterisations and could also be used in larger scale models. With this simple formula, the effective drag coefficient can be calculated as a function of the sea-ice concentration and skin drag coefficients for water and ice floes. The results obtained with this parameterisation differ only slightly from those using the more complex schemes. Finally, it is shown that in the MIZ, drag coefficients for sea-ice models may differ significantly from the effective drag coefficients used in atmospheric models.  相似文献   
986.
We investigate the mesoscale dynamics of the mistral through the wind profiler observations of the MAP (autumn 1999) and ESCOMPTE (summer 2001) field campaigns. We show that the mistral wind field can dramatically change on a time scale less than 3 hours. Transitions from a deep to a shallow mistral are often observed at any season when the lower layers are stable. The variability, mainly attributed in summer to the mistral/land–sea breeze interactions on a 10-km scale, is highlighted by observations from the wind profiler network set up during ESCOMPTE. The interpretations of the dynamical mistral structure are performed through comparisons with existing basic theories. The linear theory of R. B. Smith [Advances in Geophysics, Vol. 31, 1989, Academic Press, 1–41] and the shallow water theory [Schär, C. and Smith, R. B.: 1993a, J. Atmos. Sci. 50, 1373–1400] give some complementary explanations for the deep-to-shallow transition especially for the MAP mistral event. The wave breaking process induces a low-level jet (LLJ) downstream of the Alps that degenerates into a mountain wake, which in turn provokes the cessation of the mistral downstream of the Alps. Both theories indicate that the flow splits around the Alps and results in a persistent LLJ at the exit of the Rhône valley. The LLJ is strengthened by the channelling effect of the Rhône valley that is more efficient for north-easterly than northerly upstream winds despite the north–south valley axis. Summer moderate and weak mistral episodes are influenced by land–sea breezes and convection over land that induce a very complex interaction that cannot be accurately described by the previous theories.  相似文献   
987.
During a haze event in Baltimore, U.S.A. from July 6 to 8, 2002, smoke from forest fires in the Québec region (Canada), degraded air quality and impacted upon local climate, decreasing solar radiation and air temperature. The smoke particles in and above the atmospheric boundary layer (ABL) served as a tracer and provided a unique opportunity to investigate the ABL structure, especially entrainment. Elastic backscatter lidar measurements taken during the haze event distinctly reveal the downward sweeps (or wisps) of smoke-laden air from the free atmosphere into the ABL. Visualisations of mechanisms such as dry convection, the entrainment process, detrainment, coherent entrainment structures, and mixing inside the ABL, are presented. Thermals overshooting at the ABL top are shown to create disturbances in the form of gravity waves in the free atmosphere aloft, as evidenced by a corresponding ripple structure at the bottom of the smoke layer. Lidar data, aerosol ground-based measurements and supporting meteorological data are used to link free atmosphere, mixed-layer and ground-level aerosols. During the peak period of the haze event (July 7, 2002), the correlation between time series of elastic backscatter lidar data within the mixed layer and the scattering coefficient from a nephelometer at ground level was found to be high (R=0.96 for z =324 m, and R=0.89 for z=504 m). Ground-level aerosol concentration was at a maximum about 2 h after the smoke layer intersected with the growing ABL, confirming that the wisps do not initially reach the ground.  相似文献   
988.
The Summer Surface Energy Balance of the High Antarctic Plateau   总被引:1,自引:0,他引:1  
The summertime surface energy balance (SEB) at Kohnen station, situated on the high Antarctic plateau (75°00′ S, 0°04′ E, 2892m above sea level) is presented for the period of 8 January to 9 February 2002. Shortwave and longwave radiation fluxes were measured directly; the former was corrected for problems associated with the cosine response of the instrument. Sensible and latent heat fluxes were calculated using the bulk method, and eddy-correlation measurements and the modified Bowen ratio method were used to verify these calculated fluxes. The calculated sub-surface heat flux was checked by comparing calculated to measured snow temperatures. Uncertainties in the measurements and energy-balance calculations are discussed. The general meteorological conditions were not extraordinary during the period of the experiment, with a mean 2-m air temperature of −27.5°C, specific humidity of 0.52×10−3kg kg−1 and wind speed of 4.1ms−1. The experiment covered the transition period from Antarctic summer (positive net radiation) to winter (negative net radiation), and as a result the period mean net radiation, sensible heat, latent heat and sub-surface heat fluxes were small with values of −1.1, 0.0, −1.0 and 0.7 Wm−2, respectively. Daily mean net radiation peaked on cloudy days (16 Wm−2) and was negative on clear-sky days (minimum of −19 W m−2). Daily mean sensible heat flux ranged from −8 to +10 Wm−2, latent heat flux from −4 to 0 Wm−2 and sub-surface heat flux from −8 to +7 Wm−2.  相似文献   
989.
Boundary-layer measurements made from the Swedish icebreaker Oden during the Arctic Ocean Experiment 2001 (AOE-2001) are analysed. They refer mainly to ice drift in the central Arctic during the period 2–21 August 2001. On board Oden a remote sensing array with a wind profiler, cloud radar and a scanning microwave radiometer, and a regular weather station operated continuously; soundings were also released during research stations. Turbulence and profile measurements on an 18-m mast were deployed on the ice, along with two sodar systems, a microbarograph array and a tethered sounding system. Surface flux and meteorological stations were also deployed on nearby ice floes. There is a clear diurnal cycle in radiation and also in wind speed, cloud base and visibility. It is absent in temperature and humidity, probably due to the very strong control by melting/ freezing ice and snow. In the advection of warm air, latent heat of melting maintains the surface temperature at 0 °C, while with a negative energy balance the latent heat of freezing of the salty ocean water acts to maintain the surface temperature > −2 °C. The constant presence of water at the surface maintains a relative humidity close to 100%, and this is also often facilitated by an increasing specific humidity through the capping inversion, making entrainment a moisture source. This ensures cloudy conditions, with low cloud and fog prevailing most of the time. Intrusions of warm and moist air from beyond the ice edge are frequent, but the local Arctic boundary layer remains at a relatively constant temperature, and is shallow and well mixed with strong capping inversions. Power spectra of surface-layer wind speed sometimes show large variance at low frequency. A scanning radiometer provides a monitoring of the vertical thermal structure with a spatial and temporal resolution not seen before in the Arctic. There are often two inversions, an elevated main inversion and a weak surface inversion, and occasionally additional inversions occur. Enhanced entrainment across the main inversion appears to occur during frontal passages. Variance of the scanning radiometer temperatures occurs in large pulses rather than varying smoothly, and the height to the maximum variance appears to be a reasonable proxy for the boundary-layer depth.  相似文献   
990.
The mesoscale weather prediction model ’Lokal-Modell’ (LM) of the Deutscher Wetterdienst is applied to the situation of an Arctic cold air outbreak in the Fram Strait region in April 1998. Observations are available from a flight along 50E carried out during the ARTIST campaign. Initial and time-dependent boundary data for the simulation are taken from a larger scale operational model system. Using the standard configuration of LM, the simulation reproduced the propagation of cold air and the characteristic structure of the atmospheric boundary layer (ABL) in fair agreement with the observations. However, a detailed comparison revealed three basic problems. Firstly, there is evidence that the available data on sea-ice conditions were insufficient approximations to the true state for several reasons. A modification of the sea-ice data towards observations revealed that parts of the discrepancies were due to the original sea-ice data. Secondly, a control run with the model in its standard configuration shows an insufficient warming of the ABL downstream of the ice edge due to underestimation of surface heat fluxes. A simple modification of the approach for the scalar roughness length resulted in the strongest benefit, while comparative studies showed only a slight sensitivity to different types of parametrisation of turbulent mixing or the inclusion of an additional moist convection parametrisation. Thirdly, in all the simulations the deepening of the convective ABL downstream of the ice edge is weaker than observed. This may be partly due to the thermal stratification above the ABL in the analysis data, which is more stable than observed; but it may also be a hint to the fact that processes near the inversion are insufficiently parametrised in mesoscale models with resolutions as used in LM. The simulated cloud layer in the convective ABL is similar to that observed with respect to condensate content, a sharply defined cloud top, a diffuse lower bound, and continuous light precipitation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号