Measurements taken between July 2006 to May 2007 at the Maqu station in the Upper Yellow River area were used to study the
surface radiation budget and soil water and heat content in this area. These data revealed distinct seasonal variations in
downward shortwave radiation, downward longwave radiation, upward longwave radiation and net radiation, with larger values
in the summer than in winter because of solar altitudinal angle. The upward shortwave radiation factor is not obvious because
of albedo (or snow). Surface albedo in the summer was lower than in the winter and was directly associated with soil moisture
and solar altitudinal angle. The annual averaged albedo was 0.26. Soil heat flux, soil temperature and soil water content
changed substantially with time and depth. The soil temperature gradient was positive from August to February and was related
to the surface net radiation and the heat condition of the soil itself. There was a negative correlation between soil temperature
gradient and net radiation, and the correlation coefficient achieved a significance level of 0.01. Because of frozen state
of the soil, the maximum soil thermal conductivity value was 1.21 W m−1°C−1 in January 2007. In May 2007, soil thermal conductivity was 0.23 W m−1°C−1, which is the lowest value measured in the study, likely due to the fact that the soil was drier then than in other months.
The soil thermal conductivity values for the four seasons were 0.27, 0.38, 0.55 and 0.83 W m−1°C−1, respectively. 相似文献
Natural hillslopes are mostly composed of complex slope shapes, which significantly affect soil erosion. However, existing studies have mainly focused on uniform slopes to simplify complex hillslopes, and the mechanisms responsible for the influence of slope shape on soil and nutrient losses are still not well understood, especially in the application of soil improvers to reduce soil loss. To investigate the effects of slope shape and polyacrylamide (PAM) application on runoff, soil erosion and nutrient loss, this study conducted artificial field rainfall experiments involving two PAM application rates and nine slope shapes. The results indicate that the average amount of soil loss from convex slopes was 1.5 and 1.3 times greater than that from concave and uniform slopes, respectively, and the average amount of ammonia nitrogen loss and phosphate loss increased by 24.0%–58.6%. Soil and nutrient losses increased as the convexity of the convex slopes increased. For runoff, there was little difference between concave and convex slopes, but the runoff amount for both slopes was greater than that for uniform slopes. After PAM application, the soil loss decreased by more than 90%, and the nutrient loss decreased by 28.2%–68.1%. The application of PAM was most effective in reducing soil erosion and nutrient loss from convex slopes, and it is recommended to appropriately increase the PAM application rate for convex slopes. A strong linear relationship between ammonia nitrogen and phosphate concentrations and sediment concentrations was found in the runoff on slopes with no PAM application. However, this linear relationship weakened for slopes with PAM application. The findings of this study may be valuable for optimizing nonpoint source pollution management in basins. 相似文献
Soils containing gravel (particle size ≥2 mm) are widely distributed over the Qinghai–Tibet Plateau (QTP). Soil mixed with gravel has different thermal and hydrological properties compared with fine soil (particle size <2 mm) and thus has marked impacts on soil water and heat transfer. However, the most commonly used land models do not consider the effects of gravel. This paper reports the development of a new scheme that simulates the thermal and hydrological processes in soil containing gravel and its application in the QTP. The new scheme was implemented in version 4 of the Community Land Model, and experiments were conducted for two typical sites in the QTP. The results showed that (1) soil with gravel tends to reduce the water holding capacity and enhance the hydraulic conductivity and drainage; (2) the thermal conductivity increases with soil gravel content, and the response of the temperature of soil mixed with gravel to air temperature change is rapid; (3) the new scheme performs well in simulating the soil temperature and moisture—the mean biases of soil moisture between the simulation and observation reduced by 25–48 %, and the mean biases of soil temperature reduced by 9–25 %. Therefore, this scheme can successfully simulate the thermal and hydrological processes in soil with different levels of gravel content and is potentially applicable in land surface models.