首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5603篇
  免费   554篇
  国内免费   160篇
测绘学   246篇
大气科学   623篇
地球物理   2040篇
地质学   2242篇
海洋学   319篇
天文学   385篇
综合类   188篇
自然地理   274篇
  2023年   3篇
  2022年   12篇
  2021年   26篇
  2020年   8篇
  2019年   25篇
  2018年   450篇
  2017年   382篇
  2016年   264篇
  2015年   158篇
  2014年   131篇
  2013年   142篇
  2012年   675篇
  2011年   455篇
  2010年   144篇
  2009年   158篇
  2008年   141篇
  2007年   128篇
  2006年   145篇
  2005年   851篇
  2004年   877篇
  2003年   662篇
  2002年   183篇
  2001年   76篇
  2000年   45篇
  1999年   17篇
  1998年   10篇
  1997年   20篇
  1996年   15篇
  1991年   12篇
  1990年   11篇
  1989年   7篇
  1987年   8篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1980年   6篇
  1977年   3篇
  1976年   3篇
  1975年   5篇
  1973年   5篇
  1969年   2篇
  1968年   2篇
  1965年   3篇
  1963年   2篇
  1961年   2篇
  1959年   2篇
  1955年   2篇
  1954年   2篇
  1951年   2篇
  1948年   2篇
排序方式: 共有6317条查询结果,搜索用时 15 毫秒
751.
This paper analyses winter severity and snow conditions in the Karkonosze Mountains and Jizera Mountains and examines their long-term trends. The analysis used modified comprehensive winter snowiness (WSW) and winter severity (WOW) indices as defined by Paczos (1982). An attempt was also made to determine the relationship between the WSW and WOW indices. Measurement data were obtained from eight stations operated by the Institute of Meteorology and Water Management – National Research Institute (IMGW–PIB), from eight stations operated by the Czech Hydrological and Meteorological Institute (CHMI) and also from the Meteorological Observatory of the University of Wroc?aw (UWr) on Mount Szrenica. Essentially, the study covered the period from 1961 to 2015. In some cases, however, the period analysed was shorter due to the limited availability of data, which was conditioned, inter alia, by the period of operation of the station in question, and its type.Viewed on a macroscale, snow conditions in the Karkonosze Mountains and Jizera Mountains (in similar altitude zones) are clearly more favourable on southern slopes than on northern ones. In the study area, negative trends have been observed with respect to both the WSW and WOW indices—winters have become less snowy and warmer. The correlation between the WOW and WSW indices is positive. At stations with northern macroexposure, WOW and WSW show greater correlation than at ones with southern macroexposure. This relationship is the weakest for stations that are situated in the upper ranges (Mount ?nie?ka and Mount Szrenica).  相似文献   
752.
Walkability and livability in cities can be enhanced by creating comfortable environments in the streets. The profile of an urban street canyon has a substantial impact on outdoor thermal conditions at pedestrian level. This paper deals with the effect of asymmetrical street canyon profiles, common in the historical centre of Camagüey, Cuba, on outdoor thermal comfort. Temporal-spatial analyses are conducted using the Heliodon2 and the RayMan model, which enable the generation of accurate predictions about solar radiation and thermal conditions of urban spaces, respectively. On these models, urban settings are represented by asymmetrical street canyons with five different height-to-width ratios and four street axis orientations (N-S, NE-SW, E-W, SE-NW). Results are evaluated for daytime hours across the street canyon, by means of the physiologically equivalent temperature (PET index) which allows the evaluation of the bioclimatic conditions of outdoor environments. Our findings revealed that high profiles (façades) located on the east-facing side of N-S streets, on the southeast-facing side of NE-SW streets, on the south-facing side of E-W street, and on the southwest-facing side of SE-NW streets, are recommended to reduce the total number of hours under thermal stress. E-W street canyons are the most thermally stressed ones, with extreme PET values around 36 °C. Deviating from this orientation ameliorates the heat stress with reductions of up to 4 h in summer. For all analysed E-W orientations, only about one fifth of the street can be comfortable, especially for high aspect ratios (H/W > 3). Optimal subzones in the street are next to the north side of the E-W street, northwest side of the NE-SW street, and southwest side of the SE-NW street. Besides, when the highest profile is located on the east side of N-S streets, then the subzone next to the east-facing façade is recommendable for pedestrians. The proposed urban guidelines enable urban planners to create and renovate urban spaces which are more efficient in diminishing pedestrian thermal stress.  相似文献   
753.
In 2015, Central Europe experienced an unusually warm summer season. For a great majority of climatic stations around Slovakia, it had been the warmest summer ever recorded over their entire instrumental observation period. In this study, we investigate the mortality effects of hot days’ sequences during that particular summer on the Slovak population. In consideration of the range of available mortality data, the position of 2015 is analysed within the years 1996–2015. Over the given 20-year period, the summer heat spells of 2015 were by far the most severe from a meteorological point of view, and clearly the deadliest with the total of almost 540 excess deaths. In terms of impacts, an extraordinary 10-day August heat spell was especially remarkable. The massive lethal effects of heat would have likely been even more serious under normal circumstances, since the number of premature deaths appeared to be partially reduced due to a non-standard mortality pattern in the first quarter of the year. The heat spells of the extremely warm summer of 2015 in Slovakia are notable not just for their short-term response in mortality. It appears that in a combination with the preceding strong influenza season, they subsequently affected mortality conditions in the country in the following months up until the end of the year. The impacts described above were rather different for selected population subgroups (men and women, the elderly). Both separately and as a part of the annual mortality cycle, the 2015 summer heat spells may represent a particularly valuable source of information for public health.  相似文献   
754.
The sensitivity of tropical cyclone (TC) intensification to the ambient rotation effect under vertical shear is investigated. The results show that the vortices develop more rapidly with intermediate planetary vorticity, which suggests an optimal latitude for the TC development in the presence of vertical shear. This is different from the previous studies in which no mean flow is considered. It is found that the ambient rotation has two main effects. On the one hand, the boundary layer imbalance is largely controlled by the Coriolis parameter. For TCs at lower latitudes, due to the weaker inertial instability, the boundary inflow is promptly established, which results in a stronger moisture convergence and thus greater diabatic heating in the inner core region. On the other hand, the Coriolis parameter modulates the vertical realignment of the vortex with a higher Coriolis parameter, favoring a quicker vertical realignment and thus a greater potential for TC development. The combination of these two effects results in an optimal latitude for TC intensification in the presence of a vertical shear investigated.  相似文献   
755.
By using idealized numerical simulations, the impact of tropical cyclone size on secondary eyewall formation (SEF) is examined. Both unbalanced boundary layer and balanced processes are examined to reveal the underlying mechanism. The results show that a tropical cyclone (TC) with a larger initial size favors a quicker SEF and a larger outer eyewall. For a TC with a larger initial size, it will lead to a stronger surface entropy flux, and thus more active outer convection. Meanwhile, a greater inertial stability helps the conversion from diabatic heating to kinetic energy. Furthermore, the progressively broadening of the tangential wind field will induce significant boundary layer imbalances. This unbalanced boundary layer process results in a supergradient wind zone that acts as an important mechanism for triggering and maintaining deep convection. In short, different behaviors of balanced and unbalanced processes associated with the initial wind profile lead to different development rates of the secondary eyewall.  相似文献   
756.
Geologic seepage of methane and light (C2-C5) alkanes was measured at the La Brea Tar Pits in Los Angeles. Samples were collected using flux chambers with stainless steel canisters and analyzed using gas chromatography. Average seepage rates from individual seepage sites were 970 ± 330 mg/h of methane, 14.0 ± 5.5 mg/h of ethane, 9.1 ± 3.7 mg/h of propane, 3.7 ± 1.6 mg/h of i-butane, 0.33 ± 0.16 mg/h of n-butane, 260 ± 120 μg/h of i-pentane, and 5.3 ± 1.9 μg/h of n-pentane, while maximum seepage rates exceeded 17 g/h of methane, 270 mg/h of ethane, 190 mg/h of propane, 95 mg/h of i-butane, 10 mg/h of n-butane, 7 mg/h of i-pentane, and 0.1 mg/h of n-pentane. These absolute fluxes have an additional unknown amount of error associated with them due to sampling methodology, and should be taken as the lower limit of emissions. Samples collected revealed generally dry gas, with high methane emissions relative to the light alkanes. Overall emissions from the tar pits were found to come not only from the active geologic seepage, but also from the outgassing of the standing asphalt at the site. Using the gas ratios, which are negligibly affected by errors introduced by sampling methodology, observed in this study, daily emissions of C2 – C5 alkanes from the La Brea area were estimated to be 4.7 ± 1.6 Mg, which represents 2–3 % of total emissions in the entire Los Angeles region.  相似文献   
757.
In this paper we present first-time measurements of ozone profiles from a high altitude station in Quito, Ecuador (0.19°S, 78.4°W, and 2391 masl) taken from June 2014 to September 2015. We interpret ozone observations in the troposphere, tropopause, and stratosphere through a zonal comparison with data from stations in the Atlantic and Pacific (Natal and San Cristobal from the SHADOZ network). Tropospheric ozone concentrations above the Andes are lower than ozone over San Cristobal and Natal for similar time periods. Ozone variability and pollution layers are also reduced in the troposphere above the Andes. We explain these differences in terms of reduced contributions from the boundary layer and from horizontal transport. In the tropical tropopause layer, ozone is well-mixed up to near the cold point tropopause level. In this regard, our profiles do not show constraints to deep mixing above 14 km, as has been consistently observed at other tropical stations. Total column ozone and stratospheric column ozone are comparable among the three sites. However, the contribution of tropospheric column ozone to total column ozone is significantly lower above the Andes. Our comparisons provide a connection between observations from tropical stations in equatorial South America separated by the wide continental mass. Identified differences in ozone throughout the atmospheric column demonstrate the global benefit of having an ozone sounding station at the equatorial Andes in support of global monitoring networks.  相似文献   
758.
This study focuses on the spatial distribution of mean annual and monthly precipitation in a small island (1128 km2) named Martinique, located in the Lesser Antilles. Only 35 meteorological stations are available on the territory, which has a complex topography. With a digital elevation model (DEM), 17 covariates that are likely to explain precipitation were built. Several interpolation methods, such as regression-kriging (????????, ????????, and ????????) and external drift kriging (??????) were tested using a cross-validation procedure. For the regression methods, predictors were chosen by established techniques whereas a new approach is proposed to select external drifts in a kriging which is based on a stepwise model selection by the Akaike Information Criterion (AIC). The prediction accuracy was assessed at validation sites with three different skill scores. Results show that using methods with no predictors such as inverse distance weighting (??????) or universal kriging (????) is inappropriate in such a territory. ?????? appears to outperform regression methods for any criteria, and selecting predictors by our approach improves the prediction of mean annual precipitation compared to kriging with only elevation as drift. Finally, the predicting performance was also studied by varying the size of the training set leading to less conclusive results for ?????? and its performance. Nevertheless, the proposed method seems to be a good way to improve the mapping of climatic variables in a small island.  相似文献   
759.
The paper analyzes equivalent data for a low density meteorological station network (spatially discontinuous data) and poor temporal homogeneity of thunderstorm observational data. Due to that, a Regional Climate Model (RegCM) dataset was tested. The Most Unstable Convective Available Potential Energy index value (MUCAPE) above the 200 J kg?1 threshold was selected as a predictor describing favorable conditions for the occurrence of thunderstorms. The quality of the dataset was examined through a comparison between model results and soundings from several aerological stations in Central Europe. Good, statistically significant (0.05 significance level) results were obtained through correlation analysis; the value of Pearson’s correlation coefficient was above 0.8 in every single case. Then, using methods associated with gridded climatology, data series for 44 weather stations were derived and an analysis of correlation between RegCM modeled data and in situ thunderstorm observations was conducted with coefficients in the range of 0.75–0.90. The possibility of employing the dataset in thunderstorm climatology analysis was checked via a few examples by mapping monthly, seasonal, and annual means. Moreover, long-term variability and trend analysis along with modeled MUCAPE data were tested. As a result, the RegCM modeled MUCAPE gridded dataset was proposed as an easily available, suitable, and valuable predictor for thunderstorm climatology analysis and mapping. Finally, some limitations are discussed and recommendations for further improvements are given.  相似文献   
760.
Rainfall in New South Wales (NSW), located in the southeast of the Australian continent, is known to be influenced by four major climate drivers: the El Niño/Southern Oscillation (ENSO), the Interdecadal Pacific Oscillation (IPO), the Southern Annular Mode (SAM) and the Indian Ocean Dipole (IOD). Many studies have shown the influences of ENSO, IPO modulation, SAM and IOD on rainfall in Australia and on southeast Australia in particular. However, only limited work has been undertaken using a multiple regression framework to examine the extent of the combined effect of these climate drivers on rainfall. This paper analysed the role of these combined climate drivers and their interaction on the rainfall in NSW using Bayesian Model Averaging (BMA) to account for model uncertainty by considering each of the linear models across the whole model space which is equal to the set of all possible combinations of predictors to find the model posterior probabilities and their expected predictor coefficients. Using BMA for linear regression models, we are able to corroborate and confirm the results from many previous studies. In addition, the method gives the ranking order of importance and the probability of the association of each of the climate drivers and their interaction on the rainfall at a site. The ability to quantify the relative contribution of the climate drivers offers the key to understand the complex interaction of drivers on rainfall, or lack of rainfall in a region, such as the three big droughts in southeastern Australia which have been the subject of discussion and debate recently on their causes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号