首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  国内免费   3篇
地球物理   3篇
地质学   15篇
海洋学   2篇
天文学   1篇
自然地理   1篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
  2009年   1篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1983年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
11.
12.
13.
正The author sincerely regrets that a drafting error was not detected prior to publication and accepts full responsibility for this oversight.Figure 6 and the related graphical abstract showed the top of the mantle transition zone to be located at 440 km in depth.The correct depth is 410 km,as shown these corrected figures.Graphical abstract  相似文献   
14.
Evidence for episodic crustal growth extending back to the Hadean has recently prompted a number of numerically based geodynamic models that incorporate cyclic changes from stagnant lid to mobile lid tectonics. A large part of the geologic record is missing for the times at which several of these cycles are inferred to have taken place. The cratons, however, are likely to retain important clues relating to similar cycles developed in the Mesoarchean and Neoarchean. Widespread acceptance of a form of plate tectonics by ~3.2 Ga is not at odds with the sporadic occurrence of stagnant lid tectonics after this time. The concept of scale as applied to cratons, mantle plumes and Neoarchean volcanic arcs are likely to provide important constraints on future models of Earth's geodynamic evolution. The Superior Province will provide some of the most concrete evidence in this regard given that its constituent blocks may have been locked into a stagnant lid relatively soon after their formation and then assembled in the next global plate tectonic interval. Perceived complexities associated with inferred mantle plume — volcanic arc associations in the Superior Province and other cratons may be related to an over estimation of plume size. A possible stagnant lid episode between ~2.9 Ga and ~2.8 Ga is identified by previously unexplained lapses in volcanism on cratons, including the Kaapvaal, Yilgarn and Superior Province cratons. If real, then mantle dynamics associated with this episode likely eliminated any contemporaneous mantle plume incubation sites, which has important implications for widespread plumes developed at ~2.7 Ga and favours a shallow mantle source in the transition zone. The Superior Province provides a uniquely preserved local proxy for this global event and could serve as the basis for detailed numerical models in the future.  相似文献   
15.
Modern analytical techniques, such as Inductively Coupled Plasma Mass Spectrometry, can routinely determine the abundances of a wide range of trace elements in ultramafic to felsic igneous rocks. Exploration strategies for massive sulfide deposits can be significantly refined with these techniques because the same tectonic controls affect both the geochemical signatures of volcanic rocks and their potential to host synvolcanic ore types. The prospectivity assessment approach is not greatly affected by uncertainties regarding Archaean plate tectonics once sufficient data exist to empirically characterise strongly and weakly prospective units. Although high‐precision techniques are more expensive than the methods routinely employed by industry, the results of even a small number of analyses can dramatically reduce the costs and improve the efficiency of a massive sulfide exploration program. These techniques have previously been applied in relatively unweathered terranes of the Superior Province and Trans‐Hudson Orogen. In the future, they are also likely to be applied in the Yilgarn Craton and similar regions through analysis of saprock samples in addition to less‐abundant outcrop exposures.  相似文献   
16.
Os isotope systematics in ocean island basalts   总被引:5,自引:0,他引:5  
New ReOs isotopic results for Os-poor basalts from St. Helena, the Comores, Samoa, Pitcairn and Kerguelen dramatically expand the known range of initial 186Os/187Os ratios in OIBs to values as high as 1.7. In contrast to the Os isotopic uniformity of Os-rich basalts from the HIMU islands of Tubuai and Mangaia found by Hauri and Hart [1], our values for St. Helena span most of the known range of Os isotopic variability in oceanic basalts (initial 187Os/186Os ranges from 1.2 to 1.7). Generation of such radiogenic Os in the mantle requires melting of source materials that contain large proportions of recycled oceanic crust. The very low Os concentrations of most of the basalts analyzed here, however, leave them susceptible to modification via interaction with materials containing radiogenic Os in the near-surface environment. Thus the high 186Os/187Os ratios may result from assimilation of radiogenic Os-rich marine sediments, such as Mn oxides, within the volcanic piles traversed by these magmas en route to the surface. Furthermore, the Os isotopic signatures of Os-rich, olivine-laden OIBs may reflect the accumulation of lithospheric olivine, rather than simply their mantle source characteristics. The extent to which these processes alter the view of the mantle obtained via study of ReOs systematics in oceanic basalts is uncertain. These effects must be quantified before ReOs systematics in OIBs can be used with confidence to investigate the nature of mantle heterogeneity and its causes.  相似文献   
17.
Wang  Qiang  Tang  Gongjian  Hao  Lulu  Wyman  Derek  Ma  Lin  Dan  Wei  Zhang  Xiuzheng  Liu  Jinheng  Huang  Tongyu  Xu  Chuanbing 《中国科学:地球科学(英文版)》2020,63(10):1499-1518
Modern oceans contain large bathymetric highs(spreading oceanic ridges, aseismic ridges or oceanic plateaus and inactive arc ridges) that, in total, constitute more than 20–30% of the total area of the world's ocean floor. These bathymetric highs may be subducted, and such processes are commonly referred to as ridge subduction. Such ridge subduction events are not only very common and important geodynamic processes in modern oceanic plate tectonics, they also play an important role in the generation of arc magmatism, material recycling, the growth and evolution of continental crust, the deformation and modification of the overlying plates, and metallogenesis at convergent plate boundaries. Therefore, these events have attracted widespread attention. The perpendicular or high-angle subduction of mid-ocean spreading ridges is commonly characterized by the occurrence of a slab window, and the formation of a distinctive adakite–high-Mg andesite–Nb-enriched basalt-oceanic island basalt(OIB) or a mid-oceanic ridge basalt(MORB)-type rock suite, and is closely associated with Au mineralization. Aseismic ridges or oceanic plateaus are traditionally considered to be difficult to subduct, to typically collide with arcs or continents or to induce flat subduction(low angle of less than 10°) due to the thickness of their underlying normal oceanic crust(6–7 km) and high topography. However, the subduction of aseismic ridges and oceanic plateaus occurred on both the western and eastern sides of the Pacific Ocean during the Cenozoic. On the eastern side of the Pacific Ocean, aseismic ridges or oceanic plateaus are being subducted flatly or at low angles beneath South and Central American continents, which may cause a magmatic gap. But slab melting can occur and adakites, or an adakite–high-Mg andesite–adakitic andesite–Nb-enriched basalt suite may be formed during the slab rollback or tearing. Cu-Au mineralization is commonly associated with such flat subduction events. On the western side of the Pacific Ocean, however, aseismic ridges and oceanic plateaus are subducted at relatively high angles(30°).These subduction processes can generate large scale eruptions of basalts, basaltic andesites and andesites, which may be derived from fractional crystallization of magmas originating from the subduction zone fluid-metasomatized mantle wedge. In addition,some inactive arc ridges are subducted beneath Southwest Japan, and these subduction processes are commonly associated with the production of basalts, high-Mg andesites and adakites and Au mineralization. Besides magmatism and Cu-Au mineralization,ridge subduction may also trigger subduction erosion in subduction zones. Future frontiers of research will include characterizing the spatial and temporal patterns of ridge subduction events, clarifying the associated geodynamic mechanisms, quantifying subduction zone material recycling, establishing the associated deep crustal and mantle events that generate or influence magmatism and Cu-Au mineralization, establishing criteria to recognize pre-Cenozoic ridge subduction, the onset of modernstyle plate tectonics and the growth mechanisms for Archean continental crust.  相似文献   
18.
Changes in oceanic O–Sr isotopic compositions and global cooling beginning in the Eocene are considered to have been caused by the uplift of the Tibetan Plateau. The specific timing and uplift mechanism, however, have long been subjects of debate. We investigated the Duogecuoren lavas of the central-western Qiangtang Block, which form the largest outcrops among Cenozoic lavas in northern-central Tibet and have widely been considered as shoshonitic. Our study demonstrates, however, that most of these lavas are high-K calc-alkaline andesites, dacites and rhyolites. Moreover, they are characterized by high Sr (367–2472 ppm) and Al2O3 (14.55–16.86 wt.%) and low Y (3.05–16.9 ppm) and Yb (0.31–1.48 ppm) contents and high La/Yb (27–100) and Sr/Y (48–240) ratios, similar to adakitic rocks derived by partial melting of an eclogitic source. They can be further classified as either peraluminous and metaluminous subtypes. The peraluminous rocks have relatively high SiO2 (> 66 wt.%) contents, and low MgO (< 1.0 wt.%), Cr (4.94–23.3 ppm) and Ni (2.33–17.0 ppm) contents and Mg# (20–50) values, while the metaluminous rocks exhibit relatively low SiO2 (55–69 wt.%) contents, and high MgO (1.41–6.34), Cr (25.7–383 ppm), Ni (14.13–183 ppm) and Mg# (46–69) values, similar to magnesian andesites. 40Ar/39Ar and SHRIMP zircon U–Pb dating reveal that both peraluminous and metaluminous adakitic rocks erupted in the Eocene (46–38 Ma). Paleocene–Early Miocene thrust faults and associated syn-contractional basin deposits in the Qiangtang Block suggest that this region was undergoing crustal shortening within a continent during the Eocene. The low εNd (− 2.81 to − 6.91) and high 87Sr/86Sr (0.7057–0.7097), Th (11.2–32.3 ppm) and Th/La (0.23–0.88) values in the Duogecuoren adakitic rocks further indicate that they were not derived by partial melting of subducted oceanic crust. Taking into account tectonic and geophysical data and the compositions of xenoliths in Cenozoic lava in northern-central Tibet, we suggest that the peraluminous adakitic rocks were most probably derived by partial melting of subducted sediment-dominated continent of the Songpan-Ganzi Block along the Jinsha suture to the north at a relatively shallow position (the hornblende + garnet stability field), but the metaluminous adakitic rocks likely originated from the interaction between peraluminous adakitic melts generated at greater depths (the garnet + rutile stability field) and mantle. Because the Duogecuoren adakitic rocks must have originated from a garnet-bearing (namely, eclogite facies) source, Eocene continental subduction along the Jinsha suture caused the thickening of the Qiangtang crust. Given that crustal thickening generally equates with elevation, the uplift of the Central Tibetan Plateau probably began as early as 45–38 Ma, which provides important evidence for tectonically driven models of oceanic O–Sr isotope evolution during global cooling and Asian continental aridification beginning in the Eocene.  相似文献   
19.
In this paper we summarise the photo-physiological responses of phytoplankton to upwelling of macronutrients in mesoscale eddies in the subtropical North Atlantic (EDDIES project, Sargasso Sea) and subtropical North Pacific (E-FLUX project, Hawaii). The observations, obtained on two sets of cruises over 2 years, occupied six cyclonic eddies and two mode-water eddies. The photosynthetic physiological parameters were measured using a bench-top fluorescence induction and relaxation (FIRe) system and a submersible in situ fast repetition rate fluorometer (FRRF) deployed on an undulating towed vehicle. Both of these instruments were used to provide highly sensitive and well-resolved data on community responses. The responses are dependent on both the type of eddy and its stage of development. Our results indicate that, while cyclonic eddies in the Atlantic and Pacific can increase primary photosynthetic production early in their development, mode-water eddies in the subtropical North Atlantic can support patchy blooms of large diatoms for long periods of time (more than 3 months).  相似文献   
20.
The juvenile component of accretionary orogenic belts has been declining since the Archean. As a result, there is often controversy regarding the contribution of oceanic basalts to Phanerozoic crustal growth, as in the case of the Central Asian Orogenic Belt (CAOB). Here we report on three groups of Late Carboniferous (316–305 Ma) granitoids in the western Junggar region of northern Xinjiang, NW China, which is part of the southwestern CAOB. They consist of adakites and I and A-type granites, and as a whole have the most depleted isotopic compositions (εNd(t) = + 6–+9, (87Sr/86Sr)i = 0.7030–0.7045, and εHf(t) = + 12–+16) among the granitoids of the CAOB. These features are nearly identical to those of pre-Permian ophiolites in northern Xinjiang, and are clearly different from those of Carboniferous basalts in the western Junggar region. These relationships indicate that the granitoids were mainly derived from recycled oceanic crust by melting of subducted oceanic crust (e.g., adakites), and of the middle–lower crust of intra-oceanic arc that mainly consisted of oceanic crust (e.g., I and A-type granites). Based on evidence from the CAOB, we suggest that recycling of oceanic crust has made a significant contribution to continental crustal growth and evolution during the Phanerozoic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号