首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1596篇
  免费   88篇
  国内免费   16篇
测绘学   31篇
大气科学   132篇
地球物理   445篇
地质学   516篇
海洋学   129篇
天文学   309篇
综合类   1篇
自然地理   137篇
  2021年   27篇
  2020年   22篇
  2019年   28篇
  2018年   50篇
  2017年   38篇
  2016年   67篇
  2015年   40篇
  2014年   46篇
  2013年   94篇
  2012年   69篇
  2011年   91篇
  2010年   65篇
  2009年   103篇
  2008年   85篇
  2007年   67篇
  2006年   68篇
  2005年   73篇
  2004年   52篇
  2003年   47篇
  2002年   56篇
  2001年   34篇
  2000年   33篇
  1999年   35篇
  1998年   30篇
  1997年   19篇
  1996年   29篇
  1995年   23篇
  1994年   21篇
  1993年   17篇
  1992年   22篇
  1991年   13篇
  1990年   18篇
  1989年   10篇
  1988年   12篇
  1987年   9篇
  1986年   8篇
  1985年   14篇
  1984年   15篇
  1983年   17篇
  1982年   11篇
  1981年   15篇
  1980年   7篇
  1979年   12篇
  1978年   14篇
  1977年   10篇
  1975年   4篇
  1974年   4篇
  1973年   7篇
  1971年   4篇
  1967年   5篇
排序方式: 共有1700条查询结果,搜索用时 109 毫秒
251.
In this study, we captured how a river channel responds to a sediment pulse originating from a dam removal using multiple lines of evidence derived from streamflow gages along the Patapsco River, Maryland, USA. Gages captured characteristics of the sediment pulse, including travel times of its leading edge (~7.8 km yr−1) and peak (~2.6 km yr−1) and suggest both translation and increasing dispersion. The pulse also changed local hydraulics and energy conditions, increasing flow velocities and Froude number, due to bed fining, homogenization and/or slope adjustment. Immediately downstream of the dam, recovery to pre-pulse conditions occurred within the year, but farther downstream recovery was slower, with the tail of the sediment pulse working through the lower river by the end of the study 7 years later. The patterns and timing of channel change associated with the sediment pulse were not driven by large flow or suspended sediment-transporting events, with change mostly occurring during lower flows. This suggests pulse mobility was controlled by process-factors largely independent of high flow. In contrast, persistent changes occurred to out-of-channel flooding dynamics. Stage associated with flooding increased during the arrival of the sediment pulse, 1 to 2 years after dam removal, suggesting persistent sediment deposition at the channel margins and nearby floodplain. This resulted in National Weather Service-indicated flood stages being attained by 3–43% smaller discharges compared to earlier in the study period. This study captured a two-signal response from the sediment pulse: (1) short- to medium-term (weeks to months) translation and dispersion within the channel, resulting in aggradation and recovery of bed elevations and changing local hydraulics; and (2) dispersion and persistent longer-term (years) effects of sediment deposition on overbank surfaces. This study further demonstrated the utility of US Geological Survey gage data to quantify geomorphic change, increase temporal resolution, and provide insights into trajectories of change over varying spatial and temporal scales.  相似文献   
252.
253.
We present a 1.1 mm wavelength imaging survey covering 0.3 deg2 in the COSMOS field. These data, obtained with the AzTEC continuum camera on the James Clerk Maxwell Telescope, were centred on a prominent large-scale structure overdensity which includes a rich X-ray cluster at z ≈ 0.73. A total of 50 mm-galaxy candidates, with a significance ranging from 3.5 to 8.5σ, are extracted from the central 0.15 deg2 area which has a uniform sensitivity of ∼1.3 mJy beam−1. 16 sources are detected with S/N ≥ 4.5, where the expected false-detection rate is zero, of which a surprisingly large number (9) have intrinsic (deboosted) fluxes ≥5 mJy at 1.1 mm. Assuming the emission is dominated by radiation from dust, heated by a massive population of young, optically obscured stars, then these bright AzTEC sources have far-infrared luminosities  >6 × 1012 L  and star formation rates  >1100 M yr−1  . Two of these nine bright AzTEC sources are found towards the extreme peripheral region of the X-ray cluster, whilst the remainder are distributed across the larger scale overdensity. We describe the AzTEC data reduction pipeline, the source-extraction algorithm, and the characterization of the source catalogue, including the completeness, flux deboosting correction, false-detection rate and the source positional uncertainty, through an extensive set of Monte Carlo simulations. We conclude with a preliminary comparison, via a stacked analysis, of the overlapping MIPS 24-μm data and radio data with this AzTEC map of the COSMOS field.  相似文献   
254.
255.
256.
257.
258.
Both observational and numerical studies of the convective boundary layer (CBL) have demonstrated that when surface heat fluxes are small and mean wind shear is strong, convective updrafts tend to organize into horizontal rolls aligned within 10–20\(^\circ \) of the geostrophic wind direction. However, under large surface heat fluxes and weak to negligible shear, convection tends to organize into open cells, similar to turbulent Rayleigh-Bénard convection. Using a suite of 14 large-eddy simulations (LES) spanning a range of \(-z_i/L\) between zero (neutral) and 1041 (highly convective), where \(z_i\) is the CBL depth and L is the Obukhov length, the transition between roll- and cellular-type convection is investigated systematically for the first time using LES. Mean vertical profiles including velocity variances and turbulent transport efficiencies, as well the “roll factor,” which characterizes the rotational symmetry of the vertical velocity field, indicate the transition occurs gradually over a range of \(-z_i/L\); however, the most significant changes in vertical profiles and CBL organization occur from near-neutral conditions up to about \(-z_i/L \approx \) 15–20. Turbulent transport efficiencies and quadrant analysis are used to characterize the turbulent transport of momentum and heat with increasing \(-z_i/L\). It is found that turbulence transports heat efficiently from weakly to highly convective conditions; however, turbulent momentum transport becomes increasingly inefficient as \(-z_i/L\) increases.  相似文献   
259.
The effects on the convective boundary layer (CBL) of shading due to shallow cumulus clouds are investigated. The main question is to see whether clouds are able to produce secondary circulations by shading of the surface (dynamic heterogeneities) and how these dynamic heterogeneities interact with static heterogeneities in terms of the production of secondary circulations. Also the effects of cloud shadows on cloud-field characteristics are analyzed. The effects are studied using large-eddy simulations of a cloud-topped CBL with an idealized surface. Over a homogeneous surface, shadows trigger secondary circulations with different strengths depending on the solar zenith angle \(\vartheta \), with large \(\vartheta \) favouring the development of secondary circulations. Over a static heterogeneous surface with a simple striped pattern, the strength of secondary circulations is effectively reduced by dynamic heterogeneities at small \(\vartheta \). At large \(\vartheta \), however, the effect on secondary circulations depends on the orientation of the striped static heterogeneities to the shadow-casting direction of the clouds. The influence of shadows is only small if they are cast perpendicular to the striped heterogeneity, but if stripes and the shadow-casting direction are parallel, secondary circulations are reduced in strength also for large \(\vartheta \). Shadow effects on the cloud-field characteristics vary with \(\vartheta \) as well. The results show that small \(\vartheta \) favours the development of small clouds with a reduced lifetime while large \(\vartheta \) promotes the development of larger clouds with an extended lifetime compared to non-shading clouds.  相似文献   
260.
The volumetric rainfall attributed to Hurricane Floyd in 1999 was computed for the bulk of the Tar, Neuse, and Cape Fear River Basins in eastern North Carolina, USA from the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) research product, and compared with volumes computed using kriged gauge data and one centrally located radar. TMPA showed similar features in the band of heaviest rainfall with kriged and radar data, but was higher in the basin-scale integrations. Furthermore, Floyd’s direct runoff volumes were computed and divided by the volumetric rainfall estimates to give runoff coefficients for the three basins. The TMPA, having the larger storm totals, would suggest greater infiltration during Floyd than the gauge and radar estimates would. Finally, we discuss a concept for adjusting the United States Department of Agriculture Natural Resources Conservation Service rainfall-runoff model when predicting discharge values from real-time TMPA in ungauged river basins.
Scott CurtisEmail:
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号