首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   570篇
  免费   10篇
  国内免费   1篇
测绘学   17篇
大气科学   40篇
地球物理   130篇
地质学   195篇
海洋学   16篇
天文学   144篇
自然地理   39篇
  2021年   4篇
  2019年   10篇
  2018年   4篇
  2017年   6篇
  2016年   7篇
  2015年   4篇
  2014年   7篇
  2013年   15篇
  2012年   13篇
  2011年   10篇
  2010年   11篇
  2009年   28篇
  2008年   20篇
  2007年   16篇
  2006年   22篇
  2005年   21篇
  2004年   15篇
  2003年   12篇
  2002年   16篇
  2001年   11篇
  2000年   7篇
  1999年   15篇
  1998年   7篇
  1997年   14篇
  1996年   6篇
  1995年   16篇
  1994年   22篇
  1993年   11篇
  1992年   11篇
  1991年   15篇
  1990年   12篇
  1989年   10篇
  1988年   7篇
  1987年   8篇
  1986年   9篇
  1985年   7篇
  1984年   12篇
  1983年   15篇
  1982年   10篇
  1981年   9篇
  1980年   13篇
  1979年   7篇
  1978年   6篇
  1977年   13篇
  1975年   7篇
  1974年   6篇
  1973年   13篇
  1971年   6篇
  1963年   3篇
  1956年   4篇
排序方式: 共有581条查询结果,搜索用时 31 毫秒
91.
92.
Abstract— The large, complex Woodleigh structure in the Carnarvon basin of Western Australia has recently been added to the terrestrial impact crater record. Many aspects of this structure are, however, still uncertain. This work provides a detailed petrographic assessment of a suite of representative drill core samples from the borehole Woodleigh 1 that penetrated uplifted basement rocks of the central part of this structure. Fundamental rock and mineral deformation data and high‐precision chemical data, including results of PGE and oxygen isotopic analysis, are presented. The sampled interval displays likely impact‐produced macrodeformation in the form of fracturing and breccia veining at the microscopic scale. Contrary to earlier reports that these breccias represent pseudotachylite (friction melt) or even shock/shear‐produced pseudotachylitic melt breccia cannot be confirmed due to pervasive post‐impact alteration. Abundant planar deformation features (PDFs) in quartz, in addition to diaplectic glass and partial isotropization, are the main shock deformation effects observed, confirming that Woodleigh is of impact origin. Over the investigated depth interval, the statistics of quartz grains with a variable number of sets of PDFs does not change significantly, and the patterns of crystallographic orientations of PDFs in randomly selected quartz grains does not indicate a change in absolute shock pressure with depth either. The value of oxygen isotopes for the recognition of meteoritic contamination, as proposed by earlier Woodleigh workers, is critically assessed. Neither INA nor PGE analyses of our samples support the presence of a meteoritic component within this basement section, as had been claimed in earlier work.  相似文献   
93.
94.
95.
96.
Carbon storage and catchment hydrology are influenced both by land use changes and climatic changes, but there are few studies addressing both responses under both driving forces. We investigated the relative importance of climate change vs. land use change for four Alpine catchments using the LPJ-GUESS model. Two scenarios of grassland management were calibrated based on the more detailed model PROGRASS. The simulations until 2100 show that only reforestation could lead to an increase of carbon storage under climatic change, whereby a cessation of carbon accumulation occurred in all catchments after 2050. The initial increase in carbon storage was attributable mainly to forest re-growth on abandoned land, whereas the stagnation and decline in the second half of the century was mainly driven by climate change. If land was used more intensively, i.e. as grassland, litter input to the soil decreased due to harvesting, resulting in a decline of soil carbon storage (1.2−2.9 kg C m–2) that was larger than the climate-induced change (0.8–1.4 kg C m−2). Land use change influenced transpiration both directly and in interaction with climate change. The response of forested catchments diverged with climatic change (11–40 mm increase in AET), reflecting the differences in forest age, topography and water holding capacity within and between catchments. For grass-dominated catchments, however, transpiration responded in a similar manner to climate change (light management: 23–32 mm AET decrease, heavy management: 29–44 mm AET decrease), likely because grassroots are concentrated in the uppermost soil layers. Both the water and the carbon cycle were more strongly influenced by land use compared to climatic changes, as land use had not only a direct effect on carbon storage and transpiration, but also an indirect effect by modifying the climate change response of transpiration and carbon flux in the catchments. For the carbon cycle, climate change led to a cessation of the catchment response (sink/source strength is limited), whereas for the water cycle, the effect of land use change remains evident throughout the simulation period (changes in evapotranspiration do not attenuate). Thus we conclude that management will have a large potential to influence the carbon and water cycle, which needs to be considered in management planning as well as in climate and hydrological modelling.  相似文献   
97.
98.
We investigate the properties of optically passive spirals and dusty red galaxies in the A901/2 cluster complex at redshift ∼0.17 using rest-frame near-ultraviolet–optical spectral energy distributions, 24-μm infrared data and Hubble Space Telescope morphologies from the STAGES data set. The cluster sample is based on COMBO-17 redshifts with an rms precision of  σ cz ≈ 2000 km s−1  . We find that 'dusty red galaxies' and 'optically passive spirals' in A901/2 are largely the same phenomenon, and that they form stars at a substantial rate, which is only four times lower than that in blue spirals at fixed mass. This star formation is more obscured than in blue galaxies and its optical signatures are weak. They appear predominantly in the stellar mass range of  log  M */M=[10, 11]  where they constitute over half of the star-forming galaxies in the cluster; they are thus a vital ingredient for understanding the overall picture of star formation quenching in clusters. We find that the mean specific star formation rate (SFR) of star-forming galaxies in the cluster is clearly lower than in the field, in contrast to the specific SFR properties of blue galaxies alone, which appear similar in cluster and field. Such a rich red spiral population is best explained if quenching is a slow process and morphological transformation is delayed even more. At  log  M */M < 10  , such galaxies are rare, suggesting that their quenching is fast and accompanied by morphological change. We note that edge-on spirals play a minor role; despite being dust reddened they form only a small fraction of spirals independent of environment.  相似文献   
99.
We present a parameter study of simulations of fragmentation regulated by gravity, magnetic fields, ambipolar diffusion, and nonlinear flows. The thin-sheet approximation is employed with periodic lateral boundary conditions, and the nonlinear flow field (“turbulence”) is allowed to freely decay. In agreement with previous results in the literature, our results show that the onset of runaway collapse (formation of the first star) in subcritical clouds is significantly accelerated by nonlinear flows in which a large-scale wave mode dominates the power spectrum. In addition, we find that a power spectrum with equal energy on all scales also accelerates collapse, but by a lesser amount. For a highly super-Alfvénic initial velocity field with most power on the largest scales, the collapse occurs promptly during the initial compression wave. However, for trans-Alfvénic perturbations, a subcritical magnetic field causes a rebound from the initial compression, and the system undergoes several oscillations before runaway collapse occurs. Models that undergo prompt collapse have highly supersonic infall motions at the core boundaries. Cores in magnetically subcritical models with trans-Alfvénic initial perturbations also pick up significant systematic speeds by inheriting motions associated with magnetically-driven oscillations. Core mass distributions are much broader than in models with small-amplitude initial perturbations, although the disturbed structure of cores that form due to nonlinear flows does not guarantee subsequent monolithic collapse. Our simulations also demonstrate that significant power (if present initially) can be maintained with negligible dissipation in large-scale compressive modes of a magnetic thin sheet, in the limit of perfect flux freezing.  相似文献   
100.
Theoretical investigations show that planet-disk interactions cause structures in circumstellar disks, which are usually much larger in size than the planet itself and thus more easily detectable. The specific result of planet-disk interactions depends on the evolutionary stage of the disk. Exemplary signatures of planets embedded in disks are gaps and spiral density waves in the case of young, gas-rich protoplanetary disks and characteristic asymmetric density patterns in debris disks. Numerical simulations convincingly demonstrate that high-resolution imaging performed with observational facilities which are already available or will become available in the near future will allow to trace these “fingerprints” of planets in protoplanetary and debris disks. These observations will provide a deep insight into specific phases of the formation and early evolution of planets in circumstellar disks. In this context, the Atacama Large Millimeter Array (ALMA) will play a crucial role by allowing to trace features in disks which are indicative for various stages of the formation and early evolution of planets in circumstellar disks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号