首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   1篇
测绘学   1篇
大气科学   2篇
地球物理   2篇
地质学   14篇
海洋学   13篇
天文学   2篇
综合类   4篇
自然地理   4篇
  2019年   1篇
  2016年   1篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
  2004年   4篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1986年   7篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1966年   1篇
排序方式: 共有42条查询结果,搜索用时 78 毫秒
31.
Studies to date indirectly indicate that only a small percentage of the sediment discharged by the Huanghe (Yellow River) is presently transported from the Gulf of Bohai to the Huanghai (Yellow Sea). Direct measurements in early summer 1985 show low concentrations of suspended sediment east of 119°45E but high concentrations in Bohai Bay. Stokes drift associated with an amphidrome of the M2 tide may contribute to a northwestward transport of Huanghe sediment.  相似文献   
32.
Sediment thixotropy and submarine mass movement,Huanghe Delta,China   总被引:4,自引:0,他引:4  
Laboratory analysis of clayey silt from the offshore Huanghe Delta reveals thixotropic behavior. Fall cone tests show strength loss on remolding followed by strength regain at virtually constant water contents. The delta-front sediments experience wave loading during storms and widespread mass movement has been detected by acoustic surveying. Measurements from sea floor instruments and repeated sonographic survey during storms indicate repeated episodes of sediment motion consistent with thixotropy.  相似文献   
33.
Oxygen depletion is a seasonally dominant feature of the lower water column on the highly-stratified, riverine-influenced continental shelf of Louisiana. The areal extent of hypoxia (bottom waters ≤2 mg l?1 dissolved oxygen) in mid-summer may encompass up to 9,500 km2, from the Mississippi River delta to the upper Texas coast, with the spatial configuration of the zone varying interannually. We placed two continuously recording oxygen meters (Endeco 1184) within 1 m of the seabed in 20-m water depth at two locations 77 km apart where we previously documented midsummer bottom water hypoxia. The oxygen meters recorded considerably different oxygen conditions for a 4-mo deployment from mid-June through mid-October. At the station off Terrebonne Bay (C6A), bottom waters were severely depleted in dissolved oxygen and often anoxic for most of the record from mid-June through mid-August, and there were no strong diurnal or diel patterns. At the station 77 km to the east and closer to the Mississippi River delta (WD32E), hypoxia occurred for only 50% of the record, and there was a strong diurnal pattern in the oxygen time-series data. There was no statistically significant coherence between the oxygen time-series at the two stations. Coherence of the oxygen records with wind records was weak. The dominant coherence identified was between the diurnal peaks in the WD32E oxygen record and the bottom pressure record from a gauge located at the mouth of Terrebonne Bay, suggesting that the dissolved oxygen signal at WD32E was due principally to advection by tidal currents. Although the oxygen time-series were considerably different, they were consistent with the physical and biological processes that affect hypoxia on the Louisiana shelf. Differences in the time-series were most intimately tied to the topographic cross-shelf gradients in the two locations, that is, station C6A off Terrebonne Bay was in the middle of a broad, gradually sloping shelf and station WD32E in the Mississippi River Delta Bight was in an area with a steeper cross-shelf depth gradient and likely situated near the edge of a hypoxic water mass that was tidally advected across the study site.  相似文献   
34.
A deterministic, mass balance model for phytoplankton, nutrients, and dissolved oxygen was applied to the Mississippi River Plume/Inner Gulf Shelf (MRP/IGS) region. The model was calibrated to a comprehensive set of field data collected during July 1990 at over 200 sampling stations in the northern Gulf of Mexico. The spatial domain of the model is represented by a three-dimensional, 21-segment water-column grid extending from the Mississippi River Delta west to the Louisiana-Texas border, and from the shoreline seaward to the 30–60 m bathymetric contours. Diagnostic analyses and numerical experiments were conducted with the calibrated model to better understand the environmental processes controlling primary productivity and dissolved oxygen dynamics in the MRP/IGS region. Underwater light attenuation appears relatively more important than nutrient limitation in controlling rates of primary productivity. Chemical-biological processes appear relatively more important than advective-dispersive transport processes in controlling bottom-water dissolved oxygen dynamics. Oxidation of carbonaceous material in the water column, phytoplankton respiration, and sediment oxygen demand all appear to contribute significantly to total oxygen depletion rates in bottom waters. The estimated contribution of sediment oxygen demand to total oxygen-depletion rates in bottom waters ranges from 22% to 30%. Primary productivity appears to be an important source of dissolved oxygen to bottom waters in the region of the Atchafalaya River discharge and further west along the Louisiana Inner Shelf. Dissolved oxygen concentrations appear very sensitive to changes in underwater light attenuation due to strong coupling between dissolved oxygen and primary productivity in bottom waters. The Louisiana Inner Shelf in the area of the Atchafalaya River discharge and further west to the Texas border appears to be characterized by significantly different light attenuation-depth-primary productivity relationships than the area immediately west of the Mississippi Delta. Nutrient remineralization in the water column appears to contribute significantly to maintaining chlorophyll concentrations on the Louisiana Inner Shelf.  相似文献   
35.
The 2015 Paris Agreement requires increasingly ambitious emissions reduction efforts from its member countries. Accounting for ancillary positive health outcomes (health co-benefits) that result from implementing climate change mitigation policies can provide Parties to the Paris Agreement with a sound rationale for introducing stronger mitigation strategies. Despite this recognition, a knowledge gap exists on the role of health co-benefits in the development of climate change mitigation policies. To address this gap, the case study presented here investigates the role of health co-benefits in the development of European Union (EU) climate change mitigation policies through analysis and consideration of semi-structured interview data, government documents, journal articles and media releases. We find that while health co-benefits are an explicit consideration in the development of EU climate change mitigation policies, their influence on final policy outcomes has been limited. Our analysis suggests that whilst health co-benefits are a key driver of air pollution mitigation policies, climate mitigation policies are primarily driven by other factors, including economic costs and energy implications.

Key policy insights

  • Health co-benefits are quantified and monetized as part of the development of EU climate change mitigation policies but their influence on the final policies agreed upon is limited.

  • Barriers, such as the immediate economic costs associated with climate action, inhibit the influence of health co-benefits on the development of mitigation policies.

  • Health co-benefits primarily drive the development of EU air pollution mitigation policies.

  • The separation of responsibility for GHG and non-GHG emissions across Directorate Generals has decoupled climate change and air pollution mitigation policies, with consequences for the integration of health co-benefits in climate policy.

  相似文献   
36.
Brominated compounds are ubiquitous in the aquatic environment. The polybrominated diphenyl ether (PBDE) flame retardants are anthropogenic compounds of concern. Studies suggest that PBDEs can be biotransformed to hydroxylated brominated diphenyl ethers (OH-BDE). However, the rate of OH-BDE formation observed has been extremely small. OH-BDEs have also been identified as natural compounds produced by some marine invertebrates. Another class of compounds, the methoxylated BDEs (MeO-BDEs), has also been identified as natural compounds in the marine environment. Both the OH-BDEs and MeO-BDEs bioaccumulate in higher marine organisms. Recent studies have demonstrated that MeO-BDEs can be biotransformed to OH-BDEs and this generates greater amounts of OH-BDEs than could be generated from PBDEs. Consequently, MeO-BDEs likely represent the primary source of metabolically derived OH-BDEs. Given that for some endpoints OH-BDEs often exhibit greater toxicity compared to PBDEs, it is prudent to consider OH-BDEs as chemicals of concern, despite their seemingly "natural" origins.  相似文献   
37.
Climate changes and associated natural and anthropogenic processes have manifested themselves particularly clearly during the last two decades. The study of consequences of these changes has become one of the central scientific, social and political issues of our time (Pilot 2000; UNEP 2007).  相似文献   
38.
Peculiarities of the tungsten deposits drainage flow chemical composition formation, the development of which was ceased almost 40 years ago, have been considered. Migration peculiarities of ore components have been covered, and forms of their migration have been calculated. Inertial characteristics of the surface flow contamination are shown.  相似文献   
39.
In southern framing of Siberian Platform, basite-ultrabasite intrusive complexes were forming over a long period of time (Early Proterozoic-Paleozoic Era) as a result of collisional and post-collisional processes. In Muja zone they formed mainly in island-arch geodynamic conditions, in Kodaro-Udokan zone-in continental. Most productive toward noble metals in Muja zones are basite-ultrabasites of the Dovyrensk complex‘, in Kodaro-Udokan basites of the Chiney complex. Gold in these formations has both mantle and crustal springs.  相似文献   
40.
Abstract

The continental slope off the coast of Israel is riddled with numerous large slump scars at depths greater than 400 m. Recent scar slumps are situated in the steepest central portions of the continental slope (400–450 m depth, α = 6°), frequently disfiguring older slump scars in its lower portions. The slumping materials were probably largely transported downslope in the form of density currents, and occasionally by sliding of large sediment chunks. Upslope retrogressive slumping phases progressively disfigure the shape of the slump scars until they totally disappear, causing net reduction of the thickness of the sedimentary column. To provide a basis for the quantitative analysis of slumping, laboratory vane tests, triaxial consolidated, undrained compression tests with pore‐pressure measurements, drained direct shear tests, and consolidation tests were performed oh undisturbed samples. Because the sediments consist of normally consolidated silty clays, the geotechnical properties measured on the core samples can be readily extrapolated for greater depths, assuming the sediments are homogeneous. Angles of internal friction measured by direct shearing under drained conditions are ?d =24°‐25°, designating the maximum possible angle of a stable infinite slope. These angles are appreciably higher than the steepest slopes in the investigated area, and a drained slumping mechanism is therefore considered unlikely. The slopes of the slump scar walls are about 20°; therefore, in the absence of active erosional, sedimentological, or tectonic agents, these walls have long‐term stability (drained shear). Undrained shear failure resulting in slope instability may be attributable to rapid changes in slope geometry (undercutting or oversteepening of the slope), fluctuations in pore pressure, or accelerations associated with earthquakes. Undrained shear‐strength parameters were determined by both laboratory consolidated‐un‐ drained triaxial tests and by miniature vane shear tests. The angles of internal friction that were measured are ?cu =15°‐17°, and the cu/p o values range between 0.22 and 0.75. An analysis of the force equilibrium within the sediments leads to the conclusion that horizontal earthquake‐induced accelerations, as little as 5–6% of gravity, are sufficient to cause slope failure in the steepest slope zone (400–450 m depth, α=6°, cu/p o=0.25). Collapse resulting from liquefaction is unlikely, as the sediments are normally consolidated silty clays with intermediate sensitivity, St =2–4.

The existence of slump scars in the lower portion of the continental slope, characterized by gentle slopes (α=1°‐3°) and sediments with high shear strength (cu/p o=0.30–0.50) is attributed to large horizontal accelerations (k= 12–16% of gravity). Owing to the wide range of geotechnical properties of the sediments (cu/p o= 0.20–0.75) and the inclination of the continental slope (α=1°‐6°), the same earthquake may generate a wide range of horizontal accelerations in different portions of the continental slope, and slumping may occur wherever the stability equilibrium is disrupted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号