首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3723篇
  免费   102篇
  国内免费   39篇
测绘学   56篇
大气科学   306篇
地球物理   847篇
地质学   1315篇
海洋学   355篇
天文学   566篇
综合类   10篇
自然地理   409篇
  2021年   42篇
  2020年   40篇
  2019年   47篇
  2018年   58篇
  2017年   67篇
  2016年   75篇
  2015年   77篇
  2014年   75篇
  2013年   190篇
  2012年   103篇
  2011年   144篇
  2010年   155篇
  2009年   182篇
  2008年   146篇
  2007年   122篇
  2006年   139篇
  2005年   121篇
  2004年   95篇
  2003年   91篇
  2002年   94篇
  2001年   76篇
  2000年   51篇
  1999年   63篇
  1998年   61篇
  1997年   52篇
  1996年   70篇
  1995年   48篇
  1994年   50篇
  1993年   48篇
  1992年   55篇
  1991年   56篇
  1990年   55篇
  1989年   48篇
  1988年   54篇
  1987年   51篇
  1986年   41篇
  1985年   71篇
  1984年   88篇
  1983年   86篇
  1982年   83篇
  1981年   50篇
  1980年   61篇
  1979年   54篇
  1978年   55篇
  1977年   49篇
  1976年   40篇
  1975年   35篇
  1974年   33篇
  1973年   40篇
  1972年   25篇
排序方式: 共有3864条查询结果,搜索用时 62 毫秒
141.
This study provides new insights into the relationship between radiation-dose-dependent structural damage due to natural U and Th impurities and the anisotropic mechanical properties (Poisson’s ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. in Am Mineral 76:1510–1532, 1991) and synthetic samples, covering a dose range of zero up to 6.8 × 1018 α-decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by Özkan (J Appl Phys 47:4772–4779, 1976), revealed a general radiation-induced decrease in stiffness (~54 %) and hardness (~48 %) and an increase in the Poisson’s ratio (~54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Ríos et al. in J Phys Condens Matter 12:2401–2412, 2000a; Farnan and Salje in J Appl Phys 89:2084–2090, 2001; Zhang and Salje in J Phys Condens Matter 13:3057–3071, 2001). The excellent agreement, revealed by the different methods, indicates a large influence of structural and even local phenomena on the macroscopic mechanical properties. Therefore, this study indicates the importance of acquiring better knowledge about the mechanical long-term stability of radiation-damaged materials.  相似文献   
142.
143.
144.
Automation of the cartographic design process is central to the delivery of bespoke maps via the web. In this paper, ontological modeling is used to explicitly represent and articulate the knowledge used in this decision-making process. A use case focuses on the visualization of road traffic accident data as a way of illustrating how ontologies provide a framework by which salient and contextual information can be integrated in a meaningful manner. Such systems are in anticipation of web-based services in which the user knows what they need, but do not have the cartographic ability to get what they want.  相似文献   
145.
146.
Fluid exchange across the sediment–water interface in a sandy open continental shelf setting was studied using heat as a tracer. Summertime tidal oscillation of cross-shelf thermal fronts on the South Atlantic Bight provided a sufficient signal at the sediment–water interface to trace the advective and conductive transport of heat into and out of the seabed, indicating rapid flushing of ocean water through the upper 10–40 cm of the sandy seafloor. A newly developed transport model was applied to the in situ temperature data set to estimate the extent to which heat was transported by advection rather than conduction. Heat transported by shallow 3-D porewater flow processes was accounted for in the model by using a dispersion term, the depth and intensity of which reflected the depth and intensity of shallow flushing. Similar to the results of past studies in shallower and more energetic nearshore settings, transport of heat was greater when higher near-bed velocities and shear stresses occurred over a rippled bed. However, boundary layer processes by themselves were insufficient to promote non-conductive heat transport. Advective heat transport only occurred when both larger boundary layer stresses and thermal instabilities within the porespace were present. The latter process is dependent on shelf-scale heating and cooling of bottom water associated with upwelling events that are not coupled to local-scale boundary layer processes.  相似文献   
147.
148.
We present a numerical method for solving a class of systems of partial differential equations (PDEs) that arises in modeling environmental processes undergoing advection and biogeochemical reactions. The salient feature of these PDEs is that all partial derivatives appear in linear expressions. As a result, the system can be viewed as a set of ordinary differential equations (ODEs), albeit each one along a different characteristic. The method then consists of alternating between equations and integrating each one step-wise along its own characteristic, thus creating a customized grid on which solutions are computed. Since the solutions of such PDEs are generally smoother along their characteristics, the method offers the potential of using larger time steps while maintaining accuracy and reducing numerical dispersion. The advantages in efficiency and accuracy of the proposed method are demonstrated in two illustrative examples that simulate depth-resolved reactive transport and soil carbon cycling.  相似文献   
149.
Atom probe microscopy (APM) is a relatively new in situ tool for measuring isotope fractions from nanoscale volumes (< 0.01 μm3). We calculate the theoretical detectable difference of an isotope ratio measurement result from APM using counting statistics of a hypothetical data set to be ± 4δ or 0.4% (2s). However, challenges associated with APM measurements (e.g., peak ranging, hydride formation and isobaric interferences), result in larger uncertainties if not properly accounted for. We evaluate these factors for Re‐Os isotope ratio measurements by comparing APM and negative thermal ionisation mass spectrometry (N‐TIMS) measurement results of pure Os, pure Re, and two synthetic Re‐Os‐bearing alloys from Schwander et al. (2015, Meteoritics and Planetary Science, 50, 893) [the original metal alloy (HSE) and alloys produced by heating HSE within silicate liquid (SYN)]. From this, we propose a current best practice for APM Re‐Os isotope ratio measurements. Using this refined approach, mean APM and N‐TIMS 187Os/189Os measurement results agree within 0.05% and 2s (pure Os), 0.6–2% and 2s (SYN) and 5–10% (HSE). The good agreement of N‐TIMS and APM 187Os/189Os measurements confirms that APM can extract robust isotope ratios. Therefore, this approach permits nanoscale isotope measurements of Os‐bearing alloys using the Re‐Os geochronometer that could not be measured by conventional measurement principles.  相似文献   
150.
This paper presents a non-destructive, low-cost, photo-based, 3D reconstruction technique for characterizing geo-materials with irregular shapes of a relatively large size. After being validated against two traditional volume measurement methods, namely the vernier caliper method and the fluid displacement method for regular and irregular shapes, respectively, 3D photogrammetry was used to analyse the grout bulbs formed in laboratory pressure grouting tests. The reconstructed 3D mesh model of the sample provides accurate and detailed 3D vertex data, which allowed the volume, densification efficiency and bleeding behaviour of the grout bulbs to be analysed. Comparing the bulb section views at different grouting pressures also offers an intuitive observation of the grout development and propagation process. Moreover, the 3D vertex data and surface area included in the model are of great importance in validating numerical predictions of the pressure grouting process and analysing the interface shear resistance of grouted soil nails or anchors. Compared to existing approaches, the new 3D photogrammetry method possesses several key advantages: (a) it does not require expensive, specialized equipment; (b) samples are not destroyed or modified during testing; (c) it allows to reconstruct objects of various scales and (d) the software is public domain. Therefore, the adoption of this 3D photogrammetry method will facilitate research in the pressure grouting process and can be extended to other problems in geotechnical engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号