首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3577篇
  免费   98篇
  国内免费   39篇
测绘学   50篇
大气科学   308篇
地球物理   821篇
地质学   1275篇
海洋学   336篇
天文学   504篇
综合类   10篇
自然地理   410篇
  2021年   42篇
  2020年   42篇
  2019年   48篇
  2018年   60篇
  2017年   67篇
  2016年   74篇
  2015年   79篇
  2014年   69篇
  2013年   187篇
  2012年   97篇
  2011年   143篇
  2010年   153篇
  2009年   171篇
  2008年   136篇
  2007年   116篇
  2006年   121篇
  2005年   110篇
  2004年   94篇
  2003年   84篇
  2002年   87篇
  2001年   79篇
  2000年   48篇
  1999年   54篇
  1998年   54篇
  1997年   47篇
  1996年   71篇
  1995年   47篇
  1994年   51篇
  1993年   45篇
  1992年   56篇
  1991年   54篇
  1990年   51篇
  1989年   47篇
  1988年   53篇
  1987年   53篇
  1986年   37篇
  1985年   69篇
  1984年   88篇
  1983年   81篇
  1982年   72篇
  1981年   47篇
  1980年   57篇
  1979年   55篇
  1978年   50篇
  1977年   48篇
  1976年   42篇
  1975年   35篇
  1974年   31篇
  1973年   35篇
  1972年   25篇
排序方式: 共有3714条查询结果,搜索用时 859 毫秒
111.
Abrupt along-strike variations in tectonostratigraphic composition, internal structural style, and detachment level in the southern Appalachian and Ouachita foreland thrust belts are defined at a large-scale bend in strike and a truncation of Ouachita structures by the frontal Appalachian thrust fault. The along-strike variations correspond to differences in the pre-orogenic rifted Laurentian margin, in the history and nature of terrane accretion, and in the response of the foreland to these differences. Within the Ouachita embayment of the Laurentian margin, diachronous arc-continent collision migrated northwestward along a rift-stage transform margin from the Black Warrior foreland basin on the southeast in Late Mississippian time to a short-wavelength, high-amplitude foreland basin (Arkoma basin) on the northwest in front of the Ouachita thrust-belt salient in Early-Middle Pennsylvanian time. Off-shelf, deep-water strata of both passive-margin and synorogenic facies comprise an accretionary prism and subduction complex, and the Ouachita allochthon consists of mud-dominated thrust sheets that are internally disharmonic and folded. The allochthon of off-shelf strata was thrust over the passive-margin carbonate shelf, which remains in the Ouachita footwall. Along the southeast side of the Alabama promontory of the Laurentian margin, passive-margin shelf carbonates are imbricated in the Appalachian thrust belt, which is characterized by internally coherent thrust sheets and high-amplitude frontal ramps. The palinspastic extent of shelf-carbonate rocks corresponds to the extent of structurally shallow basement rocks on the upper-plate rift-stage margin of the Alabama promontory of Laurentian crust. Terranes accreted to the Laurentian margin during the Taconic and Acadian orogenies were driven over the shallow basement by continent-continent collision of Laurentia with Africa (Gondwana). Emplacement of the thrust-translated terranes tectonically stripped and replaced the shelf carbonate. The frontal thrust fault of the Appalachian thrust belt truncates the southeastern end of the slightly older frontal Ouachita thrust belt, as well as the southeastern part of the greater Black Warrior basin in the Ouachita foreland. Shallow basement beneath the Appalachian thrust belt extends cratonward beneath the low-amplitude Appalachian foreland basin.  相似文献   
112.
113.
This paper examines the melding of two discourses in southeastern Zimbabwe: land reform and wildlife management. The former seeks to redistribute large, ‘under-utilized’ landholdings to smallholders whilst the latter needs extensive land holdings to be viable. These two discourses are rooted in very different models of development. The land reform exercise emphasizes direct redistribution, equity and land for crops; whilst the wildlife management discourse tends to stress maximizing foreign exchange earnings, encouraging public-private partnerships and trickle down. Yet there has been a recent flurry of interest in the development of ‘wildlife models’ for land reform which would combine the two. This paper investigates whether the competing discourses about land for smallholders and wildlife-based land reform are compatible or can be successfully reconciled. It traces the ways they have come together in Zimbabwe’s southeast lowveld and examines the ‘science’ and politics underlying their melding. Finally it explores the potential implications for rural people’s livelihoods of this development. It concludes that land reform and wildlife management can be reconciled, but probably not in a particularly equitable way: it is more likely to provide an opening for an equitable land reform agenda to be usurped by local and non-local elites with wildlife interests.  相似文献   
114.
The main terminal processes of organic matter mineralization in anoxic Black Sea sediments underlying the sulfidic water column are sulfate reduction in the upper 2-4 m and methanogenesis below the sulfate zone. The modern marine deposits comprise a ca. 1-m-deep layer of coccolith ooze and underlying sapropel, below which sea water ions penetrate deep down into the limnic Pleistocene deposits from >9000 years BP. Sulfate reduction rates have a subsurface maximum at the SO42−-CH4 transition where H2S reaches maximum concentration. Because of an excess of reactive iron in the deep limnic deposits, most of the methane-derived H2S is drawn downward to a sulfidization front where it reacts with Fe(III) and with Fe2+ diffusing up from below. The H2S-Fe2+ transition is marked by a black band of amorphous iron sulfide above which distinct horizons of greigite and pyrite formation occur. The pore water gradients respond dynamically to environmental changes in the Black Sea with relatively short time constants of ca. 500 yr for SO42− and 10 yr for H2S, whereas the FeS in the black band has taken ca. 3000 yr to accumulate. The dual diffusion interfaces of SO42−-CH4 and H2S-Fe2+ cause the trapping of isotopically heavy iron sulfide with δ34S = +15 to +33‰ at the sulfidization front. A diffusion model for sulfur isotopes shows that the SO42− diffusing downward into the SO42−-CH4 transition has an isotopic composition of +19‰, close to the +23‰ of H2S diffusing upward. These isotopic compositions are, however, very different from the porewater SO42− (+43‰) and H2S (−15‰) at the same depth. The model explains how methane-driven sulfate reduction combined with a deep H2S sink leads to isotopically heavy pyrite in a sediment open to diffusion. These results have general implications for the marine sulfur cycle and for the interpretation of sulfur isotopic data in modern sediments and in sedimentary rocks throughout earth’s history.  相似文献   
115.
Geography is again becoming an integral part of the premier natural‐science agency of the federal government. Geographic research emphasizes the surface of the earth, a portion of the earth system that the U.S. Geological Survey (USGS) defines as the “critical zone.” Although geography was part of the USGS from the creation of the agency, in recent years geography in the agency has largely been limited to topographic mapping. Recently, the USGS and an advisory committee of the National Research Council (NRC) reviewed the role of geography at the Survey. The committee's report, along with ongoing decision‐making in the federal government, is likely to reshape geography in the USGS. The newly defined USGS has a regional structure and four disciplines: geology, hydrology, biology, and geography. The NRC report emphasizes the need for the creation of a spatial database called the National Map to replace the existing series of paper topographic maps. The report also outlines the need for geographic research in geographic information science (GIScience), nature‐society connections, and bridging of science to decision‐making. The NRC report has been briefed throughout the USGS, in the federal executive branch, and in Congress. The changing role for geography in the USGS requires change in the agency culture, revised budgetary decisions, and the establishment of a long‐term core agenda for research. Academic geographers will need to prepare a new generation of geographers for participation in the USGS and similar agencies.  相似文献   
116.
A high resolution (3–8 km grid), 3D numerical ocean model of the West Caribbean Sea (WCS) is used to investigate the variability and the forcing of flows near the Meso-American Barrier Reef System (MBRS) which runs along the coasts of Mexico, Belize, Guatemala and Honduras. Mesoscale variations in velocity and temperature along the reef were found in seasonal model simulations and in observations; these variations are associated with meandering of the Caribbean current (CC) and the propagation of Caribbean eddies. Diagnostic calculations and a simple assimilation technique are combined to infer the dynamically adjusted flow associated with particular eddies. The results demonstrate that when a cyclonic eddy (negative sea surface height anomaly (SSHA)) is found near the MBRS the CC shifts offshore, the cyclonic circulation in the Gulf of Honduras (GOH) intensifies, and a strong southward flow results along the reef. However, when an anticyclonic eddy (positive SSHA) is found near the reef, the CC moves onshore and the flow is predominantly westward across the reef. The model results help to explain how drifters are able to propagate in a direction opposite to the mean circulation when eddies cause a reversal of the coastal circulation. The effect of including the Meso-American Lagoon west of the Belize Reef in the model topography was also investigated, to show the importance of having accurate coastal topography in determining the variations of transports across the MBRS. The variations found in transports across the MBRS (on seasonal and mesoscale time scales) may have important consequences for biological activities along the reef such as spawning aggregations; better understanding the nature of these variations will help ongoing efforts in coral reef conservation and maintaining the health of the ecosystem in the region.  相似文献   
117.
Fission‐track, U–Pb and Pb–Pb analyses of detrital heavy mineral populations in depositional basins and modern river sediments are widely used to infer the exhumational history of mountain belts. However, relatively few studies address the underlying assumption that detrital mineral populations provide an accurate representation of their entire source region. Implicit in this assumption is the idea that all units have equal potential to contribute heavy minerals in proportion to their exposure area in the source region. In reality, the detrital mineral population may be biased by variable concentrations of minerals in bedrock and differential erosion rates within the source region. This study evaluates the relative importance of these two variables by using mixing of U–Pb zircon ages to trace zircon populations from source units, through the fluvial system, and into the foreland. The first part of the study focuses on the Marsyandi drainage in central Nepal, using tributaries that drain single formations to define the U–Pb age distributions of individual units and using trunk river samples to evaluate the relative contributions from each lithology. Observed mixing proportions are compared with proportions predicted by a simple model incorporating lithologic exposure area and zircon concentration. The relative erosion rates that account for the discrepancy between the observed and predicted mixing proportions are then modelled and compared with independent erosional proxies. The study also compares U–Pb age distributions from four adjacent drainages spanning ~250 km along the Himalayan front using the Kolmogorov–Smirnov statistic and statistical estimates of the proportion of zircon derived from each upstream lithology. Results show that, along this broad swath of rugged mountains, the U–Pb age distributions are remarkably similar, thereby allowing data from more localized sources to be extrapolated along strike.  相似文献   
118.
119.
120.
The structural organization of a giant mafic dyke swarm, the Okavango complex, in the northern Karoo Large Igneous Province (LIP) of NE Botswana is detailed. This N110°E-oriented dyke swarm extends for 1500 km with a maximum width of 100 km through Archaean basement terranes and Permo-Jurassic sedimentary sequences. The cornerstone of the study is the quantitative analysis of N>170 (exposed) and N>420 (detected by ground magnetics) dykes evidenced on a ca. 80-km-long section lying in crystalline host-rocks, at high-angle to the densest zone of the swarm (Shashe area). Individual dykes are generally sub-vertical and parallel to the entire swarm. Statistical analysis of width data indicates anomalous dyke frequency (few data <5.0 m) and mean dyke thickness (high value of 17 m) with respect to values classically obtained from other giant swarms. Variations of mean dyke thicknesses from 17 (N110°E swarm) to 27 m (adjoining and coeval N70°E giant swarm) are assigned to the conditions hosting fracture networks dilated as either shear or pure extensional structures, respectively, in response to an inferred NNW–SSE extension. Both fracture patterns are regarded as inherited brittle basement fabrics associated with a previous (Proterozoic) dyking event. The Okavango N110°E dyke swarm is thus a polyphase intrusive system in which total dilation caused by Karoo dykes (estimated frequency of 87%) is 12.2% (6315 m of cumulative dyke width) throughout the 52-km-long projected Shashe section. Assuming that Karoo mafic dyke swarms in NE Botswana follow inherited Proterozoic fractures, as similarly applied for most of the nearly synchronous giant dyke complexes converging towards the Nuanetsi area, leads us to consider that the resulting triple junction-like dyke/fracture pattern is not a definitive proof for a deep mantle plume in the Karoo LIP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号