首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   2篇
测绘学   2篇
大气科学   31篇
地球物理   36篇
地质学   38篇
海洋学   16篇
天文学   5篇
自然地理   24篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
  2017年   5篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   8篇
  2009年   11篇
  2008年   6篇
  2007年   9篇
  2006年   4篇
  2005年   8篇
  2004年   4篇
  2003年   8篇
  2002年   1篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1987年   3篇
  1986年   2篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1966年   2篇
  1955年   1篇
  1950年   1篇
  1913年   1篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
71.
72.
73.
Air guns and air-gun arrays of different volumes are used for scientific seismic surveys with R/V Polarstern in polar regions. To assess the potential risk of these research activities on marine mammal populations, knowledge of the sound pressure field of the seismic sources is essential. Therefore, a broad-band (0–80 kHz) calibration study was conducted at the Heggernes Acoustic Range, Norway. A GI (2.4 l), a G (8.5 l) and a Bolt gun (32.8 l) were deployed as single sources, 3 GI (7.4 l), 3 G (25.6 l) and 8 VLF™ Prakla-Seismos air guns (24.0 l) as arrays. Each configuration was fired along a line of 3–4 km length running between two hydrophone chains with receivers in 35, 100, 198 and 263 m depth. Peak-to-peak, zero-to-peak, rms and sound exposure levels (SEL) were analysed as functions of range. They show the typical dipole-like directivity of marine seismic sources with amplitude cancellation close to the sea surface, higher amplitudes in greater depths, and sound pressure levels which continuously decrease with range. Levels recorded during the approach are lower than during the departure indicating a shadowing effect of Polarsterns's hull. Backcalculated zero-to-peak source levels range from 224–240 dB re 1 μPa @ 1 m. Spectral source levels are highest below 100 Hz and amount to 182–194 dB re 1 μPa Hz–1. They drop off continuously with range and frequency. At 1 kHz they are ∼30 dB, at 80 kHz ∼60 dB lower than the peak level. Above 1 kHz amplitude spectra are dominated by Polarstern's self-noise. From the rms and sound exposure levels of the deepest hydrophone radii for different thresholds are derived. For a 180 dB rms-level threshold radii maximally vary between 200 and 600 m, for a 186 dB SEL threshold between 50 and 300 m.  相似文献   
74.
75.
76.
Local accuracy measures for digital terrain models   总被引:1,自引:0,他引:1  
  相似文献   
77.
78.
Turbulent fluctuations were measured at a height of 2.5 m in stable conditions over grass to investigate the variability of the second- and third-order moments involving temperature, humidity and vertical wind velocity. With the exception of the normalized second moment of temperature, very little variation of the normalized moments was found with changes in the dimensionless stability parameter =z/L, whereL is the Obukhov stability length. Such limited variation is expected for stable conditions, and the normalized second moment of temperature might have been affected by nonstationary conditions. In addition, the variability of the normalized moments was lessened by computing the turbulence statistics over 56 min, instead of 26 min. Values of third-order moments involving the vertical velocity were all close to zero.  相似文献   
79.
Large rock–ice avalanches have attracted attention from scientists for decades and some of these events have caused high numbers of fatalities. A relation between rock slope instabilities in cold high mountain areas and climate change is currently becoming more evident and questions about possible consequences and hazard scenarios in densely populated high mountain regions leading beyond historical precedence are rising. To improve hazard assessment of potential rock–ice avalanches, their mobility is a critical factor. This contribution is an attempt to unravel driving factors for the mobility of large rock–ice avalanches by synthesizing results from physical laboratory experiments and empirical data from 64 rock–ice avalanches with volumes >1x106 m3 from glacierized high mountain regions around the world. The influence of avalanche volume, water and ice content, low‐friction surfaces, and topography on the apparent coefficient of friction (as a measure of mobility) is assessed. In laboratory experiments granular ice in the moving mass was found to reduce bulk friction up to 20% while water led to a reduction around 50% for completely saturated material compared with dry flows. Evidence for the effects of water as a key driving factor to enhance mobility was also found in the empirical data, while the influence of the ice content could not be confirmed to be of much relevance in nature. Besides liquefaction, it was confirmed that mobility increases with volumes and that frictional surface characteristics such as flow paths over glaciers are also dominant variables determining mass movement mobility. Effects of the topography along the flow path as well as channeling are assumed to be other critical factors. The results provide an empirical basis to roughly account for different path and flow characteristics of large rock–ice avalanches and to find appropriate ranges for friction parameters for scenario modeling and hazard assessments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
80.
Anomalous changes in the diffuse emission of carbon dioxide within the Masaya caldera have been observed before two seismic events that occurred at 10 and 30 km from the observation site. Their epicenters are located, respectively, south of Managua in Las Colinas (4.3 magnitude) and the Xiloa caldera (3.6 magnitude), in 2002 and 2003, recorded by the geochemical station located at El Comalito, Masaya volcano (Nicaragua). Anomalous increases were observed, which occurred around 50 and 8 days before the main seismic event that took place in Las Colinas, and 4 days before the seismic swarm at the Xiloa caldera, with a maximum CO2 efflux of 9.3 and 10.7 kg m?2 day?1, respectively. The anomalous CO2 efflux increases remained after filtering with multiple regression analysis was applied to the CO2 efflux time series, which indicated that atmospheric variables, during the first 4 months, explained 23 % CO2 variability, whereas, during the rest of the time series, CO2 efflux values are poorly controlled with only 6 %. The observed anomalies of the diffuse CO2 emission rate might be related to pressure changes within the volcanic–hydrothermal system and/or to geostructural changes in the crust due to stress/strain changes caused before and during the earthquakes’ formation, and seem not to be related to the activity of the main crater of Masaya volcano.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号