收费全文 | 14404篇 |
免费 | 3337篇 |
国内免费 | 5778篇 |
测绘学 | 2712篇 |
大气科学 | 2436篇 |
地球物理 | 2610篇 |
地质学 | 9895篇 |
海洋学 | 2465篇 |
天文学 | 138篇 |
综合类 | 1138篇 |
自然地理 | 2125篇 |
2024年 | 198篇 |
2023年 | 472篇 |
2022年 | 1009篇 |
2021年 | 1146篇 |
2020年 | 1023篇 |
2019年 | 1143篇 |
2018年 | 982篇 |
2017年 | 904篇 |
2016年 | 914篇 |
2015年 | 1104篇 |
2014年 | 984篇 |
2013年 | 1200篇 |
2012年 | 1297篇 |
2011年 | 1263篇 |
2010年 | 1222篇 |
2009年 | 1189篇 |
2008年 | 1159篇 |
2007年 | 1107篇 |
2006年 | 1145篇 |
2005年 | 893篇 |
2004年 | 616篇 |
2003年 | 492篇 |
2002年 | 554篇 |
2001年 | 536篇 |
2000年 | 394篇 |
1999年 | 188篇 |
1998年 | 42篇 |
1997年 | 47篇 |
1996年 | 24篇 |
1995年 | 15篇 |
1994年 | 26篇 |
1993年 | 18篇 |
1992年 | 23篇 |
1991年 | 23篇 |
1990年 | 29篇 |
1989年 | 10篇 |
1988年 | 13篇 |
1987年 | 21篇 |
1986年 | 10篇 |
1985年 | 19篇 |
1984年 | 12篇 |
1983年 | 10篇 |
1982年 | 6篇 |
1981年 | 2篇 |
1979年 | 6篇 |
1978年 | 6篇 |
1976年 | 5篇 |
1966年 | 1篇 |
1957年 | 7篇 |
1954年 | 7篇 |
利用国际卫星云气候计划(International Satellite Cloud Climate Program,简称ISCCP)提供的1998—2007年共10 a的深对流路径跟踪资料,统计分析了影响江淮地区对流系统(Convection system,简称CS)的时空分布及其参数特征。结果表明:影响江淮地区的CS主要集中在春夏两季,大多生成于江淮本地及我国中西部地区,呈现以江淮地区为中心的带状分布特征,越靠近江淮区域CS分布越为密集。依据源地不同,将影响江淮地区的CS分为5类,受气候条件与地形地貌的共同作用,各源地CS参数特征差异显著,总体来说CS的水平尺度越大,其生命史、对流云团(Convective clusters,简称CC)数目及水平云温度梯度也越大。其中江淮中心区域(MID)区域CS水平尺度、生命史和CC数目的平均值均为最小;东南(SE)区域CS生命周期以中长周期为主,水平尺度、最大对流比和云温度梯度的平均值最大。梅雨期内江淮地区对流活动频繁,CS的水平尺度大、生命史长、CC数目多。
相似文献利用变分方法建立预报场和预报倾向场这一预报场组合与模式预报非系统性误差之间的映射关系,来估计GRAPES(Global/Regional Assimilation and PrEdiction System)模式的非系统性误差,从而对预报做出修正。采用两种不同的历史样本建立这一映射关系,其中,利用相同时刻历史样本建立映射关系的方法称为DEM方法;通过相似面积比选取“相似样本”来建立上述映射关系的方法称为SEM方法。以FNL分析资料作为评判预报误差的依据,根据2002—2010年7月GRAPES模式500 hPa高度场48 h预报的回报资料,利用两种不同的方案进行非系统性误差的估计及预报订正试验。对279个检验样本的试验结果表明:SEM方法和DEM方法都对非系统性误差有一定的估算能力,二者估算的非系统性误差空间分布和量级与模式非系统性误差较一致,SEM方法的修订效果略优于DEM方法,但并不明显。对预报做出系统性误差和非系统性误差两步订正后,DEM方法和SEM方法的订正有效率分别为98.566%和100%,可明显提高预报的准确性。
相似文献本文融合SIO(Scripps Institution of Oceanography)发布的垂线偏差、重力异常和垂直重力梯度数据及NCEI(National Centers for Environmental Information)发布的船载测深数据, 利用多层感知机神经网络(Multi-Layer Perceptron, MLP)建立南海海域(108°E—121°E, 6°N—23°N)分辨率为1'×1'的海底地形模型(MLP_Depth).首先, 将642716个船载测深控制点的位置信息与周围4'×4'格网点处的地球重力信息(垂线偏差、重力异常、垂直重力梯度)作为输入数据, 将船载测深控制点处实测水深值作为输出数据, 训练MLP神经网络模型, 训练结束时决定系数R2为99%, 平均绝对误差MAE为39.33 m.然后, 将研究区域内1'×1'格网正中心点处的输入数据输入于MLP模型中, 可得格网正中心点处的预测海深值.最后, 根据预测海深值建立研究区域范围内分辨率为1'×1'的MLP_Depth模型.将MLP_Depth模型预测水深与160679个检核点处实测水深对比, 其差值的标准差STD(75.38 m)、平均绝对百分比误差MAPE(5.89%)与平均绝对误差MAE(42.91 m)皆优于GEBCO_2021模型、topo_23.1模型、ETOPO1模型与检核点实测水深差值的STD(108.88 m、113.41 m、229.67 m)、MAPE(6.11%、6.94%、18.37%)与MAE(47.33 m、52.24 m、130.08 m).同时, 为了研究不同区域内利用该方法建立的海底地形模型的精度, 本文在研究区域内分别建立了A、B区域的海底地形模型(MLP_Depth_A、MLP_Depth_B).经过验证得: MLP_Depth_A、MLP_Depth_B相比于MLP_Depth模型具有更高的精度, 更能反应海底地形的变化趋势.
相似文献410 km和660 km地幔间断面在地球内部动力学研究中具有重要意义. 在研究地幔间断面的方法中, SS前驱波由于具有全球采样优势得以广泛应用. SS及其前驱波模拟可利用有限差分和谱元法等数值模拟方法, 它们在模拟全球尺度地震波传播时具有高精度的特点, 但往往计算量很大. 因此, 该类方法难以应用于反射点广泛分布的情形. 而基于传播矩阵发展的SS及其前驱波模拟方法在保持高精度计算的同时, 可大幅提高计算效率. 本文针对SS及其前驱波的传播特征, 改进了基于传播矩阵方法的波形合成算法FASHSHWF. 通过简单层状模型对该算法进行了测试, 验证了算法及相应程序的正确性. 计算效率测试表明改进算法相较常规传播矩阵算法可节约50%以上的计算时间. 通过与AxiSEM计算的波形对比, 验证了FASHSHWF用于SS及其前驱波模拟的有效性. 在上述工作的基础上, 本文进一步探讨了新算法在研究全球近地表结构对地幔间断面复杂性探测影响中的应用.
相似文献本文利用红外热成像手段,对微小煤样内的甲烷吸附区进行了观察,并评估其吸附特征与在煤中的分布规律.研究表明煤中存在不同尺度与甲烷吸附能力的甲烷富集区,吸附/解吸甲烷时,甲烷富集区比邻近区域具有更明显的升温/降温现象.通过图像处理的方法对不同吸附压力条件下的红外热像图中的甲烷富集区进行提取,采用盒维数进行统计发现甲烷富集区符合分形规律.试验表明随着吸附压力升高,甲烷富集区的分形维数增大,分布初值减小.对两个不同煤田的煤层气富集区进行统计表明:从微米级到千米级尺度范围内,甲烷富集区分布具有分形特征,且分形维数均在1.5~2.00之间.
相似文献