首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   6篇
大气科学   1篇
地球物理   20篇
地质学   62篇
天文学   37篇
自然地理   3篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2016年   5篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
  1985年   7篇
  1984年   3篇
  1983年   5篇
  1982年   6篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1975年   4篇
  1974年   3篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
21.
22.
Bocaiuva is a unique meteorite consisting of major metal having a high Ge/Ga ratio and minor (~ 50 mg/g) silicates. The silicates are generally chondritic and consist of major olivine (Fa.7.7) and orthopyroxene (Fs7.6) and minor plagioclase (Ab49, An49) and clinopyroxene (Fs4.5, Wo42). The low alkali content of the silicates is the only property inconsistent with a chondritic composition. Based on metal composition Bocaiuva seems distantly related to certain iron meteorites having similar Ge contents and similar Ge/Ga ratios, but detailed comparison with six such irons shows none to be closely related to Bocaiuva. Perhaps most closely related is Cold Bay, a member of the Eagle-Station trio of pallasites, but its composition is too different to suggest formation on the same parent body. Oxygen-isotope data show that Bocaiuva silicates are closely related to those in the Eagle-Station pallasites and to the CO and CV chondrites. The composition and texture of the Bocaiuva metal-silicate assembly indicate mixing in an impact event. We suggest that the Eagle-Station pallasites were also formed by impact heating rather than by a long-lived internal heat source.  相似文献   
23.
24.
Abstract— Research on chondrules during the past decade and a half has produced a number of constraints on the processes that formed these enigmatic objects. Although some chondrules may have formed in exceptional ways, it now seems clear that the vast majority did not form by condensation or by any other process that resulted in an extended (>100 s) period of heating; viable models of chondrule formation must generate brief (1–10 s) “flash” heating events. Many chondrules were incompletely melted, indicating that the heat source was marginal; coarse-grained rims are probably the result of heating by the same source that heated chondrules. Although some chondrules are enriched in refractories and poor in volatiles, most chondrules contain FeS in their interiors, implying that the last generation of chondrules formed after the local nebula had cooled below 650 K. The very small weight fraction of chondrules haying small (<50 μm in ordinary chondrites) radii requires either that (a) the formational process destroyed small chondrules by volatilizing them or efficiently recycling them into larger chondrules, or (b) that nebular size-sorting occurred and the fine fraction is not well represented in our known set of chondrites. Our recent studies of compound chondrules show that about 60% are siblings that formed together in the same heating event, and about 40% are independents that originated in different events. Independent compound chondrules tend to have similar FeO/(FeO + MgO) ratios, a possible indication of a high degree of compositional homogeneity in nebular subrogions defined by location or time. About 8% of barred olivine chondrules are the primaries of independently formed compound chondrules, and have thus been subjected to at least two flash-heating events. Allowance for observational biases suggests that a sizable fraction of chondrules have experienced two thermal events strong enough to produce major melting as well as many additional events that could produce minor melting, sintering, and crystal growth.  相似文献   
25.
We present new data for iron meteorites that are members of group IAB or are closely related to this large group, and we have also reevaluated some of our earlier data for these irons. In the past it was not possible to distinguish IAB and IIICD irons on the basis of their positions on element-Ni diagrams, but we now show that plotting the new and revised data yields six sets of compact fields on element-Au diagrams, each set corresponding to a compositional group. The largest set includes the majority (≈70) of irons previously designated IA; we christened this set the IAB main group. The remaining five sets we designate “subgroups” within the IAB complex. Three of these subgroups have Au contents similar to the main group, and form parallel trends on most element-Ni diagrams. The groups originally designated IIIC and IIID are two of these subgroups; they are now well resolved from each other and from the main group. The other low-Au subgroup has Ni contents just above the main group. Two other IAB subgroups have appreciably higher Au contents than the main group and show weaker compositional links to it. We have named these five subgroups on the basis of their Au and Ni contents. The three subgroups having Au contents similar to the main group are the low-Au (L) subgroups, the two others the high-Au (H) subgroups. The Ni contents are designated high (H), medium (M), or low (L). Thus the old group IIID is now the sLH subgroup, the old group IIIC is the sLM subgroup. In addition, eight irons assigned to two grouplets plot between sLL and sLM on most element-Au diagrams. A large number (27) of related irons plot outside these compact fields but nonetheless appear to be sufficiently related to also be included in the IAB complex.Many of these irons contain coarse silicates having similar properties. Most are roughly chondritic in composition; the mafic silicates show evidence of reduction during metamorphism. In each case the silicate O-isotopic composition is within the carbonaceous chondrite range (Δ17O ≤ −0.3‰). In all but four cases these are within the so-called IAB range, −0.30 ≥ Δ17O ≥ −0.68‰. Fine silicates appear to be ubiquitous in the main group and low-Au subgroups; this requires that viscosities in the parental melt reached high values before buoyancy could separate these.The well-defined main-group trends on element-Au diagrams provide constraints for evaluating possible models; we find the evidence to be most consistent with a crystal segregation model in which solid and melt are essentially at equilibrium. The main arguments against the main group having formed by fractional crystallization are: a) the small range in Ir, and b) the evidence for rapid crystallization and a high cooling rate through the γ-iron stability field. The evidence for the latter are the small sizes of the γ-iron crystals parental to the Widmanstätten pattern and the limited thermal effects recorded in the silicates (including retention of albitic plagioclase and abundant primordial rare gases). In contrast, crystal segregation in a cooling metallic melt (and related processes such as incomplete melting and melt migration) can produce the observed trends in the main group. We infer that this melt was formed by impact heating on a porous chondritic body, and that the melt was initially hotter than the combined mix of silicates and metal in the local region; the melt cooled rapidly by heat conduction into the cooler surroundings (mainly silicates). We suggest that the close compositional relationships between the main group and the low-Au subgroups are the result of similar processes instigated by independent impact events that occurred either at separate locations on the same asteroid or on separate but compositionally similar asteroids.  相似文献   
26.
Radiocarbon-dated sediment cores from subalpine lakes were used to investigate post-glacial dust deposition in the Uinta Mountains (Utah, USA). Lake sediments were geochemically characterized with ICP-OES, ICP-MS and XRF core scanning. Collections from passive samplers constrain the properties of modern dust, and samples of regolith constrain properties of the local material within the watershed. Ca and Eu are more abundant in dust, whereas Ti and Zr are more abundant in local regolith. As a result, the Ca/Ti and Eu/Zr ratios are indices for the dust content of lake sediment. In all records, the dust index rises in the early Holocene as watersheds became stabilized with vegetation, reducing the influx of local material. After this point, values remained above average through the middle Holocene, consistent with an increased dust content in the sediment. Dust index values drop in the late Holocene in most lakes, suggesting a decrease in dust abundance. Generally synchronous shifts in dust index values in cores from lakes in different parts of this mountain range are evidence of enhanced dust deposition in this region during the middle Holocene, and are consistent with a variety of records for increased aridity in the south-western USA at this time.  相似文献   
27.
28.
Ecotones, the narrow transition zones between extensive ecological systems, may serve as sensitive indicators of climate change because they harbor species that are often near the limit of their physical and competitive tolerances. We investigated the ecotone between salt marsh and adjacent upland at Elkhorn Slough, an estuary in California, USA. Over a period of 10 years, we monitored movement of the ecotone–upland boundary, plant community structure, and physical factors likely to drive ecotone response. At three undiked sites, the ecotone boundary migrated about 1 m landward, representing a substantial shift for a transition zone that is only a few meters wide. Analysis of potential correlates of this upward migration suggests that it was driven by increased tidal inundation. Mean sea level did not increase during our study, but inundation at high elevations did. While the ecotone boundary responded dynamically to interannual changes in inundation at these undiked sites, the plant community structure of the ecotone remained stable. At two diked sites, we observed contrasting patterns. At one site, the ecotone boundary migrated seaward, while at the other, it showed no consistent trend. Diking appears to eliminate natural sensitivity of the ecotone boundary to interannual variation in oceanic and atmospheric drivers, with local factors (management of water control structures) outweighing regional ones. Our study shows that the marsh–upland ecotone migrated rapidly in response to environmental change while maintaining stable plant community structure. Such resilience, stability, and rapid response time suggest that the marsh–upland ecotone can serve as a sensitive indicator of climate change.  相似文献   
29.
Because uncertainties in experimental data are large, one has considerable latitude in choosing the input parameters needed to calculate iron meteorite cooling rates. The best way to test input parameters is by examining their ability to yield the observed properties of the meteorites. Our phase diagram yields fits to kamacite profiles that are superior to those based on the Moren-Goldstein phase diagram. Our method of allowing for the effect of P on the Ni diffusion coefficient takes into account the enhancement in this effect with decreasing temperature; Moren and Goldstein use a relationship derived for a temperature of 1100°C, well outside the 700–350°C range where kamacite growth occurs. Use of our input parameters yields cooling rates in IVA irons that are independent of composition, consistent with a core origin. Since the fractionation of siderophiles in group IVA also indicates a core origin, we conclude that this is the correct model for this group.  相似文献   
30.
Estimating wind transport of sand on vegetated surfaces   总被引:5,自引:0,他引:5  
Vegetation significantly reduces the transport of sand by wind. We report a generalization of Bagnold's transport equation by finding empirical mathematical expressions to describe the relationships between projected vegetation cover, wind speed outside the area of vegetation, and transport rates. Examples of the use of the equations are given, illustrating the effect of vegetation cover on sand transport, dune encroachment and soil nutrient loss during individual wind storms and over periods of many years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号