首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   568篇
  免费   24篇
  国内免费   17篇
测绘学   14篇
大气科学   27篇
地球物理   178篇
地质学   168篇
海洋学   86篇
天文学   69篇
综合类   16篇
自然地理   51篇
  2022年   5篇
  2021年   5篇
  2020年   7篇
  2019年   4篇
  2018年   11篇
  2017年   14篇
  2016年   22篇
  2015年   14篇
  2014年   23篇
  2013年   39篇
  2012年   14篇
  2011年   31篇
  2010年   20篇
  2009年   30篇
  2008年   32篇
  2007年   26篇
  2006年   16篇
  2005年   24篇
  2004年   14篇
  2003年   21篇
  2002年   17篇
  2001年   16篇
  2000年   16篇
  1999年   16篇
  1998年   15篇
  1997年   11篇
  1996年   2篇
  1995年   8篇
  1994年   11篇
  1993年   7篇
  1992年   7篇
  1991年   8篇
  1990年   8篇
  1989年   12篇
  1988年   8篇
  1987年   8篇
  1986年   7篇
  1985年   5篇
  1984年   8篇
  1983年   3篇
  1982年   6篇
  1981年   5篇
  1980年   6篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
排序方式: 共有609条查询结果,搜索用时 15 毫秒
601.
602.
The chemical forms of heavy metals (Pb, Zn and Cu) in sediment cores of the Pearl River Estuary were studied using a sequential chemical extraction method. The isotope ratios of 206Pb/207Pb in various chemical fractions were also measured to assess the potential Pb sources. Zinc and Cu were mainly associated with the residual fraction. The Fe-Mn oxide and organic/sulphide fractions were the next important phases for Zn and Cu, respectively. For Pb, different chemical partitioning patterns were found among different sediment cores. Most Pb was associated with the residual fraction in the sediments. In some sediment profiles, the major phase of Pb in the top layers was the Fe-Mn oxide fraction. The proportion of Pb in the Fe-Mn oxide fraction decreased significantly with increasing depth. Among the different depths, the 206Pb/207Pb isotope ratios in the residual fraction remained fairly stable, with a mean value of 1.202, which may represent the natural background value. The 206Pb/207Pb ratios in the exchangeable fraction were the lowest among the five fractions, particularly in top sediments, showing the anthropogenic inputs of heavy metals from recent rapid industrial development in the surrounding region. For the other three non-residual fractions, there was a similar trend of increasing 206Pb/207Pb ratios down the profile. Results from this study are useful in assessing both the chemical changes for heavy metals in marine sediments and the potential of heavy metal release into the water environment of an estuary area.  相似文献   
603.
The formation and dynamics of turbidity maxima (TM) in the Pearl River estuary (PRE) are not well understood but the existence of TM in the estuary have great potential engineering and environmental impacts. Based on the measurements of two large-scale field surveys conducted in the wet season of 1978 (July of 1978) and the dry season of 1979 (March of 1979), the existence and seasonal variations of TM in the PRE focusing on the two major natural navigation channels have been studied. The sediment transport fluxes over two consecutive tidal cycles have been analyzed in detail. The analysis results reveal that the formation mechanisms of TM in the estuary are rather complex. In general, gravitational circulation, tidal trapping, and sediment resuspension and deposition processes are the primary TM formation mechanisms in the PRE. The clockwise back flow pattern around Lingding Island also leads to the formation of TM in the West channel of the PRE. The occurrence of TM far upstream of the salt water wedge is the result of the complex hydrodynamic and sediment transport processes generated by the runoff of the major rivers.  相似文献   
604.
Pouragha  Mehdi  Eghbalian  Mahdad  Wan  Richard  Wong  Tai 《Acta Geotechnica》2021,16(4):1147-1160

Water retention of clayey soils with wide particle size distributions involves a combination of capillary and adsorbed layers effects that result into suction–saturation relations spanning over multiple decades of matric suction values. The present study provides a physics-based analysis to reproduce the water retention curve of such soils based solely on particle size distribution and porosity. The distribution of inter-particle pore sizes is inferred through a probabilistic treatment of the particle size distribution, which is then used, together with an assigned pore entry pressure, to estimate the inter-particle water volume at a given suction. The contribution to water content from adsorbed layers is also taken into account by considering the balance of electrochemical forces between water and clay material. The total water content is therefore found by summing up the contribution of inter-particle water, as well as adsorbed layers that form around clay particles and around the individual clay platelets. Comparisons with experimental results on nine different soil samples verify the capability of the model in accurately predicting the wide water retention curves without any prior calibration. Additional to capturing the essential features of the water retention curve with remarkable detail, the analytical model also provides insights into the relative contributions of capillary and adsorbed waters to the overall saturation at different suction regimes. Being based upon easily accessible information such as particle size distribution and void ratio, the model can therefore be considered as a substitute for costly and lengthy laboratory and in situ measurements of water retention curve.

  相似文献   
605.
Hydraulic fracturing in permeable rock is a complicated process which might be influenced by various factors including the operational parameters (e.g., fluid viscosity, injection rate and borehole diameter) and the in situ conditions (e.g., in situ stress states and initial pore pressure level). To elucidate the effects of these variables, simulations are performed on hollow-squared samples at laboratory scale using fully coupled discrete element method. The model is first validated by comparing the stress around the borehole wall measured numerically with that calculated theoretically. Systematic parametric studies are then conducted. Modeling results reveal that the breakdown pressure and time to fracture stay constant when the viscosity is lower than 0.002 Pa s or higher than 0.2 Pa s but increases significantly when it is between 0.002 and 0.2 Pa s. Raising the injection rate can shorten the time to fracture but dramatically increase the breakdown pressure. Larger borehole diameter leads to the increase in the time to fracture and the reduction in the breakdown pressure. Higher in situ stress requires a longer injection time and higher breakdown pressure. The initial pore pressure, on the other hand, reduces the breakdown pressure as well as the time to fracture. The increase in breakdown pressure with viscosity or injection rate can be attributed to the size effect of greater tensile strength of samples with smaller infiltrated regions.  相似文献   
606.
607.
Piping flow networks have often been identified in hydrogeological field studies of gravelly soil slopes in the southern part of China. The present experimental studies have shown that under long-term groundwater seepage, piping flow networks gradually develop in the slope. Factors affecting the development of flow pipe seepage network included the grain size distribution, the degree of soil compaction, and soil depth. Piping seepage networks favorably form if the content of the gravel was high, the soil cohesion was low, the degree of the soil compaction was low, or the soil depth was shallow. Due to the enhanced permeability associated with the presence of flow pipe seepage network in gravelly soil slopes, groundwater can be effectively drained away. This can beneficially prevent the rise of groundwater level in the slope during raining seasons, hence reducing pore water pressure along the potential failure surface and increasing slope stability. Once the flow pipe seepage network was disturbed or damaged, the water level in the upper portion of the slope experienced a great rise, hence reducing the slope stability. Therefore, slope toe excavation and excessive loading at the slope crest should be avoided for slopes with well-developed flow pipe seepage network in order to preserve it.  相似文献   
608.
The present numerical study, which is an extension of our previous numerical analysis on cracking processes of a single pre-existing flaw, focuses on the coalescence of two pre-existing parallel open flaws in rock subjected to a uniaxial compressive loading. To facilitate a systematic investigation, the arrangements of the flaw pair are classified into 11 categories. Simulations engaging AUTODYN are conducted on each category. The numerical results are compared with some published physical experimental test results. Eleven typical coalescence patterns are obtained, which are in good agreement with the experimental results, which include two coalescence patterns obtained in flaw pair arrangements (II) and (VIII″) not being reported in previous studies. The information gathered in the simulations helps identify the type (tensile/shear) of each crack segment involved in the coalescence. Most of the coalescence cracks initiate at or around the flaw tips, except those in flaw pair arrangements (II) and (IX′) with a very short ligament length, in which the coalescence cracks initiate on the flaw surfaces away from the flaw tip regions. Based on the numerical simulation results, the properties of the 11 coalescence patterns are obtained. Except those in flaw pair arrangements (II) and (IX′), the other coalescence patterns can be interpreted with respect to the basic crack types—tensile wing crack, horsetail crack and anti-wing crack. In addition, based on the type of crack segments involved in coalescence, namely tensile and shear, the coalescence can be classified into T mode (tensile mode), S mode (shear mode) and TS mode (mixed tensile–shear mode).  相似文献   
609.
Near-infrared and mid-infrared observations of the site of the 2009 July 19 impact of an unknown object with Jupiter were obtained within days of the event. The observations were used to assess the properties of a particulate debris field, elevated temperatures, and the extent of ammonia gas redistributed from the troposphere into Jupiter’s stratosphere. The impact strongly influenced the atmosphere in a central region, as well as having weaker effects in a separate field to its west, similar to the Comet Shoemaker-Levy 9 (SL9) impact sites in 1994. Temperatures were elevated by as much as 6 K at pressures of about 50-70 mbar in Jupiter’s lower stratosphere near the center of the impact site, but no changes above the noise level (1 K) were observed in the upper stratosphere at atmospheric pressures less than ∼1 mbar. The impact transported at least ∼2 × 1015 g of gas from the troposphere to the stratosphere, an amount less than derived for the SL9 C fragment impact. From thermal heating and mass-transport considerations, the diameter of the impactor was roughly in the range of 200-500 m, assuming a mean density of 2.5 g/cm3. Models with temperature perturbations and ammonia redistribution alone are unable to fit the observed thermal emission; non-gray emission from particulate emission is needed. Mid-infrared spectroscopy of material delivered by the impacting body implies that, in addition to a silicate component, it contains a strong signature that is consistent with silica, distinguishing it from SL9, which contained no evidence for silica. Because no comet has a significant abundance of silica, this result is more consistent with a “rocky” or “asteroidal” origin for the impactor than an “icy” or “cometary” one. This is surprising because the only objects generally considered likely to collide with Jupiter and its satellites are Jupiter-Family Comets, whose populations appear to be orders of magnitude larger than the Jupiter-encountering asteroids. Nonetheless, our conclusion that there is good evidence for at least a major asteroidal component of the impactor composition is also consistent both with constraints on the geometry of the impactor and with results of contemporaneous Hubble Space Telescope observations. If the impact was not simply a statistical fluke, then our conclusion that the impactor contained more rocky material than was the case for the desiccated Comet SL9 implies a larger population of Jupiter-crossing asteroidal bodies than previously estimated, an asteroidal component within the Jupiter-Family Comet population, or compositional differentiation within these bodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号