首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
测绘学   2篇
地球物理   6篇
地质学   1篇
天文学   2篇
自然地理   28篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1981年   5篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
11.
Since its launch in March 2002, the Gravity Recovery and Climate Experiment (GRACE) has provided a global mapping of the time-variations of the Earth’s gravity field. Tiny variations of gravity from monthly to decadal time scales are mainly due to redistributions of water mass inside the surface fluid envelops of our planet (i.e., atmosphere, ocean and water storage on continents). In this article, we present a review of the major contributions of GRACE satellite gravimetry in global and regional hydrology. To date, many studies have focused on the ability of GRACE to detect, for the very first time, the time-variations of continental water storage (including surface waters, soil moisture, groundwater, as well as snow pack at high latitudes) at the unprecedented resolution of ~400–500 km. As no global complete network of surface hydrological observations exists, the advances of satellite gravimetry to monitor terrestrial water storage are significant and unique for determining changes in total water storage and water balance closure at regional and continental scales.  相似文献   
12.
Body tides on an elliptical, rotating, elastic and oceanless earth   总被引:17,自引:0,他引:17  
Summary. The Earth's deformation caused by the luni-solar tidal force is defined as the 'body tide'. We compute the effects of the Earth's rotation and elliptical stratification on the body tide for a number of modern elastic structural models. Rotation and ellipticity within the mantle are found to affect tidal observations by about 1 per cent. A consequence is an improved estimate for the fluid core resonance in the diurnal tidal band. Agreement between results for the different structural models is very good. As a result, the results computed here can be used to model the tidal effects of a globally averaged, oceanless, rotating, elliptical and elastic earth to an accuracy of at least one part in 300.  相似文献   
13.
The forthcoming GRAV-D gravimetric geoid model over the United States is to be updated regularly to account for changes in geoid height. Its baseline precision is to be at the 10–20 mm level over non-mountainous regions. The aim of this study is to provide an estimate of the magnitude, time scale, and spatial footprint of geoid height change over North America, from mass redistribution processes of hydrologic, cryospheric and solid Earth nature. Geoid height changes from continental water storage changes over the past 50 years and predicted over the next century are evaluated and are highly dependent on the used model. Groundwater depletion from anthropogenic pumping in regional scale aquifers may lead to geoid changes of 10 mm magnitude every 50–100 years. The GRACE time varying gravity fields are used to (i) assess the errors in a glacial isostatic adjustment model, which, if used to correct the GRAV-D model, may induce errors at the 10 mm geoid height level after ~20 years, (ii), evaluate geoid height change over ice mass loss regions of North America, which, if they remain unchanged in the future, may lead to geoid height changes at the 10 mm level in under a decade and (iii), compute sea level rise and its effect on the geoid, which is found to be negligible. Coseismic gravitational changes from past North American earthquakes are evaluated, and lead to geoid change at the 10-mm level for only the largest thrust earthquakes. Finally, geoid change from volcanic processes are assessed and found to be significant with respect to the GRAV-D geoid model baseline precision for cataclysmic events, such as that of the 1980 Mt. St. Helens eruption. Recommendations on how to best monitor geoid change in the future are given.  相似文献   
14.
Abstract

By K. Lambeck (Cambridge Monograph on Mechanics and Applied Mathematics). Cambridge University Press, Cambridge, England, 1980. xi +449 pp. (Hard cover £35.00) (ISBN 0 521 22769 0).  相似文献   
15.
16.
17.
Summary. The pole tide is the response of the ocean to incremental centrifugal forces associated with the Chandler wobble. The tide has a potentially important effect on the period and damping of the wobble, but it is at present not well constrained by observations. Here, we construct both analytical and numerical models for the pole tide. The analytical models consider the tide first in a global ocean and then in an enclosed basin on a beta-plane. The results are found to approach equilibrium linearly with decreasing frequency and inversely with increasing basin depth. The numerical models solve Laplace's tidal equations over the world's oceans using realistic continental boundaries and bottom topography. The results indicate that the effects of the non-equilibrium portion of the deep ocean tide on the Chandler wobble period and damping are negligible.  相似文献   
18.
An excitation mechanism for the free 'core nutation'   总被引:2,自引:0,他引:2  
Summary. The Earth is believed to possess a free nutational mode due to its rotating, elliptical, fluid core, with an eigenfrequency of approximately (1 + 1/460) cycle sidereal day−1 as seen from the sidereally rotating Earth. This free 'core nutation' has not yet been undisputably observed. Furthermore, there has been considerable doubt that any known mechanism could excite this mode to an observable level. We show here that diurnal atmospheric and oceanic loading of the Earth's surface provide an efficient excitation mechanism which depends critically on the physical damping of the mode. Possible effects of the mode on geodetic measurements are discussed. We also consider the effects of 'wobble' and 'nutation' on astrometric observations.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号