首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52596篇
  免费   818篇
  国内免费   610篇
测绘学   1359篇
大气科学   4384篇
地球物理   11066篇
地质学   18430篇
海洋学   4133篇
天文学   11149篇
综合类   108篇
自然地理   3395篇
  2020年   307篇
  2019年   319篇
  2018年   741篇
  2017年   708篇
  2016年   1033篇
  2015年   702篇
  2014年   1041篇
  2013年   2446篇
  2012年   1157篇
  2011年   1679篇
  2010年   1451篇
  2009年   2008篇
  2008年   1774篇
  2007年   1639篇
  2006年   1742篇
  2005年   1469篇
  2004年   1526篇
  2003年   1473篇
  2002年   1470篇
  2001年   1240篇
  2000年   1276篇
  1999年   1148篇
  1998年   1092篇
  1997年   1129篇
  1996年   976篇
  1995年   947篇
  1994年   861篇
  1993年   771篇
  1992年   757篇
  1991年   690篇
  1990年   737篇
  1989年   661篇
  1988年   666篇
  1987年   781篇
  1986年   696篇
  1985年   869篇
  1984年   1002篇
  1983年   1016篇
  1982年   869篇
  1981年   837篇
  1980年   815篇
  1979年   769篇
  1978年   793篇
  1977年   708篇
  1976年   681篇
  1975年   661篇
  1974年   730篇
  1973年   707篇
  1972年   452篇
  1971年   385篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
921.
922.
A field experiment consisting of geophysical logging and tracer testing was conducted in a single well that penetrated a sand-and-gravel aquifer at the U.S. Geological Survey Toxic Substances Hydrology research site on Cape Cod, Massachusetts. Geophysical logs and flowmeter/pumping measurements were obtained to estimate vertical profiles of porosity ϕ, hydraulic conductivity K, temperature, and bulk electrical conductivity under background, freshwater conditions. Saline-tracer fluid was then injected into the well for 2 h and its radial migration into the surrounding deposits was monitored by recording an electromagnetic-induction log every 10 min. The field data are analyzed and interpreted primarily through the use of Archie's (1942) law to investigate the role of topological factors such as pore geometry and connectivity, and grain size and packing configuration in regulating fluid flow through these coarse-grained materials. The logs reveal no significant correlation between K and ϕ, and imply that groundwater models that link these two properties may not be useful at this site. Rather, it is the distribution and connectivity of the fluid phase as defined by formation factor F, cementation index m, and tortuosity α that primarily control the hydraulic conductivity. Results show that F correlates well with K, thereby indicating that induction logs provide qualitative information on the distribution of hydraulic conductivity. A comparison of α, which incorporates porosity data, with K produces only a slightly better correlation and further emphasizes the weak influence of the bulk value of ϕ on K.  相似文献   
923.
924.
Mineral magnetic measurements of six 210Pb-dated surface cores from different basins of Lake Baikal, Siberia, show temporal records controlled by a range of internal and external processes. With the exception of sediments on the Academician Ridge, there is clear evidence for widespread reductive diagenesis effects on the ferrimagnetic component coupled with neo-formation of paramagnetic iron minerals. Greigite formation, bacterial magnetosome accumulation and turbidite layers may affect the properties of some sediment levels. Concentrations of canted antiferromagnetic minerals (eg. haematite) appear to increase from the 19th century onwards. These minerals are less affected by dissolution processes and probably represent detrital minerals delivered by catchment fluvial processes. The magnetic evidence for recent atmospheric pollution by fossil-fuel combustion processes is weak in all the cores, and supports the findings from studies of spherical carbonaceous particles (SCPs) and heavy metals that pollution is largely restricted to the southern basin. Correlations between recent sediments based on magnetic data may be insecure over long distances or between basins.  相似文献   
925.
Lake Winnipeg, the seventh largest lake in North America, is located at the boundary between the Interior Plains and the Canadian Shield in Manitoba, Canada. Seismic profiles were obtained in Lake Winnipeg on two geoscientific cruises in 1994 and 1996. These data indicate the morphology of the bedrock surface. In most cases, a clear distinction between low relief Paleozoic carbonate rock and high relief Precambrian rock can be made. In northern Lake Winnipeg, the eastern limit of Paleozoic rock is clearly demarcated 30 km west of the previous estimate of its position. In southern Lake Winnipeg, all or most of the Paleozoic sequence terminates at a prominent buried escarpment in the centre of the lake. This indicates that Paleozoic rock on the eastern shore, known from drilling and outcrops, is an outlier. Major moraines are apparent as abrupt, large ridges having a chaotic internal reflection pattern. These include the Pearson Reef Moraine, the George Island Moraine and the offshore extension of The Pas Moraine. Little evidence for extensive or thick till was observed. Instead, fine-grained sediments deposited in glacial Lake Agassiz rest directly on bedrock over most of the lake basin. Hence an episode of erosion to bedrock was associated with glaciation and/or deglaciation. The Agassiz Sequence sediments are well-stratified, drape underlying relief and in some areas are over 100 m thick. In places, stratification in these sediments is disrupted, perhaps by dewatering. Evidence of erosion of Agassiz Sequence sediments by recent currents was observed. The contact between the Agassiz Sequence and the overlying Winnipeg Sequence sediments is a marked angular unconformity. The Agassiz Unconformity indicates up to 10 m of erosion in places. The low-relief character of this unconformity precludes subaerial erosion and the lack of till, moraines, or extensive deformation precludes glacial erosion. Waves appear to be the most likely erosional agent, either in waning Lake Agassiz or early Lake Winnipeg time. Winnipeg Sequence sediments, in places very thin, mantle most of the lakefloor. These sediments were deposited in the present Lake Winnipeg and are faintly stratified to massive and reach about 10 m in thickness in deep water. On the surface of the Winnipeg Sequence, vigorous, episodic currents are thought to contribute to the construction of flow-transverse sand waves as much as 6 m high in a deep, narrow constriction in the lake.  相似文献   
926.
The Andrews site represents one of countless prairie potholes found in areas of hummocky moraine on the northern Great Plains. Sediments from a depth of 5.8 to 3.1 m at this 'kettle-fill' site in the Missouri Coteau upland of southern Saskatchewan, Canada, provides a record of vegetation, climate, and hydrologic changes within a small, ca 30 m diameter, closed-drainage basin from ca 10.2 to 5.8 ka. Plant macrofossil analyses of 67 samples, 6 14C ages, and stratigraphy were used to identify 5 zones, representing the paleohydrological changes that followed deglaciation in southern Saskatchewan.Results of this study indicate that with the melting of residual stagnant ice a pond (>2 m deep) with abundant aquatic, emergent, and shoreline plants developed in the basin at ca 10.2 ka and persisted until at least ca 8.8 ka. During this time there was a shift in upland vegetation from a white spruce forest (Zone II) to a deciduous parkland at ca 10 ka (Zone III). As climate warmed, brackish and alkaline conditions developed coincident with shallowing of the pond at the end of Zone III. The perennial water phase ended at ca 8.8 ka and was followed by a low-water stand lasting ca 1100 years. Prairie fires and slopewash from unstable slopes were dominant sedimentological processes until ca 7.7 ka (Zone IV). Water levels began to rise and between ca 7.7 and 5.8 ka a semi-permanent pond was established in a grassland setting (Zone V). After ca 5.8 ka this prairie pothole wetland became ephemeral, to the point that plant macrofossils could not be preserved, a situation continuing today. Interactions between climate change, variability in local groundwater supply, and sedimentological processes likely account for the paleohydrologic events reconstructed at the Andrews site.  相似文献   
927.
Geomorphology of a beach-ridge complex and adjacent lake basins along the northern shore of Lake Michigan records fluctuations in the level of Lake Michigan for the last 8000 to 10 000 14C yr B.P. (radiocarbon years Before Present). A storm berm at 204.7–206 m (671.6–675.9 ft) exposed in a sandpit provides evidence of a pre-Chippewa Low lake level that is correlated with dropping water levels of Glacial Lake Algonquin (c. 10 300–10 100 14C yr B.P.). Radiocarbon dates from organic material exposed in a river cutbank and basal sediments from Elbow Lake, Mackinac Co., Michigan, indicate a maximum age of a highstand of Lake Michigan at 6900 14C yr B.P., which reached as high as 196.7 m (645 ft), during the early-Nipissing transgression of Lake Michigan. Basal radiocarbon dates from beach swales and a second lake site (Beaverhouse Lake, Mackinac Co.) provide geomorphic evidence for a subsequent highstand which reached 192.6 m (632 ft) at 5390±70 14C yr B.P.Basal radiocarbon dates from a transect of sediment cores, along with tree-ring data, and General Land Office Surveyor notes of a shipwreck, c. A.D. 1846, reveal a late-Holocene rate for isostatic rebound of 22.6 cm/100 radiocarbon years (0.74 ft/100 radiocarbon years) for the northern shore of Lake Michigan, relative to the Lake Michigan-Lake Huron outlet at Port Huron, Michigan. Changes in sediment stratigraphy, inter-ridge distance, and sediment accumulation rates document a mid- to late-Holocene retreat of the shoreline due to isostatic rebound. This regression sequence was punctuated by brief, periodic highstands, resulting in progressive development over the past 5400 14C yr of 75 pairs of dune ridges and swales each formed over an interval of approximately 72 years. Times of lake-level fluctuation were identified at 3900, 3200, and 1000 14C yr B.P. based on changes in inter-ridge spacing, shifts in the course of Millecoquins River, and reorientation of beach-ridge lineation. Soil type, dune development, and selected pollen data provide supporting evidence for this chronology. Late-Holocene beach-ridge development and lake-level fluctuations are related to a retreat of the dominant Pacific airmass and the convergence of the Arctic and Tropical airmasses resulting in predominantly meridional rather than zonal air flow across the Great Lakes region.This is the 13th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest editor for these papers.  相似文献   
928.
929.
The mode-matching method is used to obtain an exact analytical solution to the problem of B -polarization induction in two adjacent thin half-sheets, lying on a conducting layer that is terminated by a perfect conductor at finite depth. These components of the model represent, respectively, the Earth's conducting surface layers, crust, and mantle. In dimensionless variables, the model has three independent parameters, these being the two thin-sheet conductances and the layer thickness. The mode-matching solution obtained in this paper is shown to be identical lo that derived via the Wiener-Hopf method in a companion paper (Dawson 1996), and so provides additional verification of that solution. As was shown in the companion paper, the solution for the present model contains, as special limiting cases, those for three models considered earlier by various authors. The second part of the present paper addresses the solutions for the electric fields in the non-conducting half-space above the conductors, which represents the atmosphere. In the final part, sample numerical calculations are presented to illustrate the solution.  相似文献   
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号