首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48820篇
  免费   933篇
  国内免费   466篇
测绘学   1118篇
大气科学   3602篇
地球物理   10263篇
地质学   17124篇
海洋学   3976篇
天文学   10676篇
综合类   79篇
自然地理   3381篇
  2020年   329篇
  2019年   335篇
  2018年   775篇
  2017年   708篇
  2016年   952篇
  2015年   716篇
  2014年   980篇
  2013年   2313篇
  2012年   1191篇
  2011年   1713篇
  2010年   1464篇
  2009年   2050篇
  2008年   1846篇
  2007年   1769篇
  2006年   1707篇
  2005年   1464篇
  2004年   1528篇
  2003年   1445篇
  2002年   1395篇
  2001年   1218篇
  2000年   1166篇
  1999年   1083篇
  1998年   1066篇
  1997年   1067篇
  1996年   855篇
  1995年   825篇
  1994年   787篇
  1993年   724篇
  1992年   659篇
  1991年   592篇
  1990年   657篇
  1989年   553篇
  1988年   548篇
  1987年   646篇
  1986年   559篇
  1985年   791篇
  1984年   861篇
  1983年   872篇
  1982年   728篇
  1981年   701篇
  1980年   707篇
  1979年   641篇
  1978年   663篇
  1977年   581篇
  1976年   611篇
  1975年   574篇
  1974年   575篇
  1973年   576篇
  1972年   378篇
  1971年   317篇
排序方式: 共有10000条查询结果,搜索用时 531 毫秒
881.
The dynamics and thermodynamics of large ash flows   总被引:6,自引:6,他引:0  
 Ash flow deposits, containing up to 1000 km3 of material, have been produced by some of the largest volcanic eruptions known. Ash flows propagate several tens of kilometres from their source vents, produce extensive blankets of ash and are able to surmount topographic barriers hundreds of metres high. We present and test a new model of the motion of such flows as they propagate over a near horizontal surface from a collapsing fountain above a volcanic vent. The model predicts that for a given eruption rate, either a slow (10–100 m/s) and deep (1000–3000 m) subcritical flow or a fast (100–200 m/s) and shallow (500–1000 m) supercritical flow may develop. Subcritical ash flows propagate with a nearly constant volume flux, whereas supercritical flows entrain air and become progressively more voluminous. The run-out distance of such ash flows is controlled largely by the mass of air mixed into the collapsing fountain, the degree of fragmentation and the associated rate of loss of material into an underlying concentrated depositional system, and the mass eruption rate. However, in supercritical flows, the continued entrainment of air exerts a further important control on the flow evolution. Model predictions show that the run-out distance decreases with the mass of air entrained into the flow. Also, the mass of ash which may ascend from the flow into a buoyant coignimbrite cloud increases as more air is entrained into the flow. As a result, supercritical ash flows typically have shorter runout distances and more ash is elutriated into the associated coignimbrite eruption columns. We also show that one-dimensional, channellized ash flows typically propagate further than their radially spreading counterparts. As a Plinian eruption proceeds, the erupted mass flux often increases, leading to column collapse and the formation of pumiceous ash flows. Near the critical conditions for eruption column collapse, the flows are shed from high fountains which entrain large quantities of air per unit mass. Our model suggests that this will lead to relatively short ash flows with much of the erupted material being elutriated into the coignimbrite column. However, if the mass flux subseqently increases, then less air per unit mass is entrained into the collapsing fountain, and progressively larger flows, which propagate further from the vent, will develop. Our model is consistent with observations of a number of pyroclastic flow deposits, including the 1912 eruption of Katmai and the 1991 eruption of Pinatubo. The model suggests that many extensive flow sheets were emplaced from eruptions with mass fluxes of 109–1010 kg/s over periods of 103–105 s, and that some indicators of flow "mobility" may need to be reinterpreted. Furthermore, in accordance with observations, the model predicts that the coignimbrite eruption columns produced from such ash flows rose between 20 and 40 km. Received: 25 August 1995 / Accepted: 3 April 1996  相似文献   
882.
A project intended to examine the long-standing claims that extragalactic redshifts are periodic or quantized was initiated some years ago at the Royal Observatory, Edinburgh. The approach taken is outlined, and the main conclusions to date are summarized. The existence of a galactocentric redshift quantization is confirmed at a high confidence level.  相似文献   
883.
Summary In-situ microprobe LREE analyses of perovskite and titanite (La, Ce, Nd), and apatite (La, Ce), from SW Ugandan clinopyroxenite xenoliths and kamafugite lavas indicate that LREE distribution in these minerals is determined by a number of factors related to their different parageneses: In particular LREE content is affected by whether the LREE-bearing minerals have crystallised from metasomatic carbonate or from silicate (i.e. metasomatic or magmatic) melts in the mantle. In this situation LREE partition favours carbonate over silicate melts. Distribution of LREE in perovskite and apatite crystallised from magmatic mantle melts or mantle-derived lavas is chiefly determined by preference of LREE for perovskite > apatite > titanite. LREE zoning in perovskite is influenced by changes in melt structure: increasing melt polymerisation enhancing mineralLREE/meltLREE partition into perovskite rims in magmatic xenoliths; decreasing melt polymerisation depleting LREE in lava perovskite rims. This zoning is reinforced by perovskite competition with apatite for LREE: perovskite (cores/rims) co-crystallising with apatite is reduced in LREE. There are 37 instances of perovskitewith Ce below detection while La and Nd levels are normal. These occur in both xenoliths and lavas; in grain zones or whole grains. Likewise Ce alone of the LREE is below detection in six out of ten titanite analyses. These observations are interpreted as evidence for increased fO 2, Ce4 + being excluded from these mineral structures. Recognition of these various processes can elucidate the interpretation of bulk rock and bulk mineral LREE signatures in kamafugite volcanism.
LREE Verteilung in Perovskit, Apatit und Titanit aus Xenolithen und kamafugitischen Laven Südwest-Ugandas
Zusammenfassung In-situ LREE Analysen von Perovskit und Titanit (La, Ce, Nd) und Apatit (La, Ce) aus Klinopyroxenit-Xenolithen und kamafugitischen Laven Südwest-Ugandas zeigen, daß die LREE Verteilung in diesen Mineralen durch eine Vielzahl von Faktoren, die mit Unterschieden in den Paragenesen zusammenhängen, bestimmt wird: Der LREE-Gehalt wird im besonderen davon bestimmt, ob die LREE-führenden Minerale aus metasomatischen Karbonat- oder aus (metasomatischen oder magmatischen) Silikatschmelzen im Mantel auskristallisierten. Dabei erfolgt die LREE Fraktionierung zu Gunsten der Karbonatschmelzen. Die LREE-Verteilung von Perovskit und Apatit, die aus magmatischen Mantelschmelzen oder -laven kristallisierten, wird vorrangig durch den bevorzugten Einbau der LREE in Perovskit > Apatit > Titanit kontrolliert. Der LREE Zonarbau von Perovskit wird durch die Änderungen der Schmelzstruktur beinflußt: Verstärkte Schmelzpolymerisation führt zu verstärkter MineralLFEE/SchmelzeLREE Fraktionierung in den Perovskiträndern magmatischer Xenolithe, eine Abnahme der Schmelzpolymerisation hingegen resultiert in einer Abreicherung der LREE in den Perovskiträndern. Diese Art der Zonierung wird durch den Wettbewerb von Perovskit mit Apatit um die LREE verstärkt. Perovskit (Kerne/Ränder), der mit Apatit gemeinsam auskristallisierte, ist ärmer an LREE. 37 Fälle, in denenCe nicht nachweisbar war, La und Nd aber in normaler Konzentration auftreten, wurden sowohl in den Xenolithen als auch in den Laven gefunden; und zwar entweder in Kornbereichen oder in ganzen Körnern. Vergleichsweise liegt Ce nur in sechs von zehn Titanitproben unterhalb der Nachweisgrenze. Diese Beobachtungen werden als Hinweise auf erhöhte SauerstoffFugazitäten, bei denen Ce4– aus der Mineralstruktur ausgeschlossen wird, angesehen.Ein Verständnis dieser verschiedenen Prozesse kann zur besseren Interpretation von LREE Gesamtgesteins- und Gesamtmineral-Signaturen in Kamafugiten beitragen.


With 3 Figures  相似文献   
884.
Summary The Ulten Zone of the Austroalpine crystalline basement south-west of Meran (Italy) contains metapelitic schists and granoblastic paragneisses, leucocratic orthogneisses, migmatites (in both gneiss-lithologies), metabasites and ultramafic lenses. Metamorphic textures of the metapelitic schists and granoblastic paragneisses indicate two different metamorphic events, characterized by two mineral assemblages, which differ in mineral chemistry: (1) an eclogite facies mineral assemblage (M1) comprising Grt-Ky I-Bt. Ms-Kfs-PI-Qtz-Rt, and (2) an amphibolite facies mineral assemblage (M2) comprising Grt-KyII-Bt-Ms-PI-Qtz-Ilm±St. For the M1 event, pressures of at least 15kbar and temperatures of about 700°±50°C can be estimated. The later amphibolite facies overprint occurred at pressures of 6 to 8kbar and about 600°±50°C. The M1 and M2 assemblages belong to a continuous clockwise metamorphic evolution during the Variscan orogeny. Evidence for Alpine metamorphism can only be detected by sericite rims around kyanite and reset biotite ages. The migmatites, which contribute about 15–30vol.% of all rocks in the investigated area, were formed on the prograde path during the M1 event. Dissolution of H2O in the melted part of the migmatites resulted in a CO2dominated fluid, which was trapped in primary kyanite (M1) fluid inclusions. Secondary H2O-rich fluid inclusions are found in quartz grains and may represent the fluid which enabled a pervasive equilibration during M2.
Übergang von eklogit-zu amphibolitfazieller Matamorphose in der austroalpinen Ultenzone
Zusammenfassung Die Ulten Zone, ein Teil des ostalpinen kristallinen basements, südwestlich von Meran, wird aus Metapeliten and granoblastischen Paragneisen, leukokraten Orthogneisen, Migmatiten (in beiden Lithologien), Metabasiten and ultramafischen Linsen aufgebaut. Metamorphe Texturen der Metapelite und granoblastischen Paragneise lassen auf zwei verschiedene metamorphe Ereignisse schließen, die durch unterschiedliche Mineral-chemismen und Paragenesen charakterisiert sind: (1) eine eklogitfazielle Paragenese (M1), bestehend aus Grt-KyI-Bt-Ms-Kfs-P1-Qtz-Rt und (2) eine amphibolitfazielle Paragenese (M2), bestehend aus Grt-KyII-Bt-Ms-P1-Qtz-Ilm±St. Für M1 konnten Minimaldrucke von 15kbar und Temperaturen von 700°±50°C abgeleitet werden. Die spätere amphibolitfazielle Überprägung fand bei 6 bis 8kbar und 600°±50°C statt. M1 und M2 gehören einer kontinuierlichen Metamorphoseentwicklung während der variszischen Orogenese an.Die Migmatite, ungefähr 15–30vol.% der Gesteine im untersuchten Gebiet, wurden am prograden Pfad während des M1 Ereignisses gebildet. Aufgrund der höheren Löslichkeit von H20 in der Schmelze, blieb ein CO2, reiches Fluid zurück, das im primären Kyanit (M1) eingeschlossen wurde. Wässrige Flüssigkeitseinschlüsse können in Quarzkörnern gefunden werden. Dieses Fluid ist wahrscheinlich für die Reequilibrierung zu amphibolitfaziellen Bedingungen verantwortlich.


With 5 Figures  相似文献   
885.
Based on four UK Schmidt Telescope (UKST) IIIa-j direct plates which had been digitized by the Automated Plate Measuring System (APM), a detailed identification of the disk galaxies in the Virgo cluster has been carried out. The certain and possible member galaxies are mainly selected from the updated Catalogue of 2096 Galaxies in the Virgo Cluster Area (VCC). The area of this identification covers a 85 square degree region centered on this cluster. As a result, we compiled a new catalogue of 340 certain and possible member disk galaxies, including 85 lenticulars (SO), 136 spirals (S) and 119 irregulars (Irr), where the APM-measured values of the position angle (P.A.) and diameters of 299 disk galaxies are provided. For at least 149 galaxies, the values of the P.A. and diameters are published for the first time.Comparison between the APM-measured P.A. and diameters of galaxies and those given by the Uppsala General Catalog of Galaxies (UGC) demonstrates the reliability of our data. The statistical properties and completeness of this database are also discussed. Compared with the UGC-given P.A. and diameters which were determined by eyes, our data has no selection effect owing to the instrument measurements. Within our searching region, this might be the largest and relatively complete photometric database published so far for investigating the spatial orientation of the spin vectors of galaxies in the Virgo cluster.  相似文献   
886.
L1498 is a classic example of a dense cold pre-protostellar core. To study the evolutionary status, the structure, dynamics, and chemical properties of this core we have obtained high spatial and high spectral resolution observations of molecules tracing densities of 10(3)-10(5) cm-3. We observed CCS, NH3, C3H2, and HC7N with NASA's DSN 70 m antennas. We also present large-scale maps of C18O and 13CO observed with the AT&T 7 m antenna. For the high spatial resolution maps of selected regions within the core we used the VLA for CCS at 22 GHz, and the Owens Valley Radio Observatory (OVRO) MMA for CCS at 94 GHz and CS (2-1). The 22 GHz CCS emission marks a high-density [n(H2) > 10(4) cm -3] core, which is elongated with a major axis along the SE-NW direction. NH3 and C3H2 emissions are located inside the boundary of the CCS emission. C18O emission traces a lower density gas extending beyond the CCS boundary. Along the major axis of the dense core, CCS, NH3 and C3H2 emission show evidence of limb brightening. The observations are consistent with a chemically differentiated onion-shell structure for the L1498 core, with NH3 in the inner and CCS in the outer parts of the core. The high angular resolution (9"-12") spectral line maps obtained by combining NASA Goldstone 70 m and VLA data resolve the CCS 22 GHz emission in the southeast and northwest boundaries into arclike enhancements, supporting the picture that CCS emission originates in a shell outside the NH3 emitting region. Interferometric maps of CCS at 94 GHz and CS at 98 GHz show that their emitting regions contain several small-scale dense condensations. We suggest that the differences between the CCS, CS, C3H2, and NH3 emission are caused by a time-dependent effect as the core evolves slowly. We interpret the chemical and physical properties of L1498 in terms of a quasi-static (or slowly contracting) dense core in which the outer envelope is still growing. The growth rate of the core is determined by the density increase in the CCS shell resulting from the accretion of the outer low-density gas traced by C18O. We conclude that L1498 could become unstable to rapid collapse to form a protostar in less than 5 x 10(6) yr.  相似文献   
887.
A new interstellar molecular ion, H2COH+ (protonated formaldehyde), has been detected toward Sgr B2, Orion KL, W51, and possibly in NGC 7538 and DR21(OH). Six transitions were detected in Sgr B2(M). The 1(1,0)-1(0,1) transition was detected in all sources listed above. Searches were also made toward the cold, dark clouds TMC-1 and L134N, Orion (3N, 1E), and a red giant, IRC + 10216, without success. The excitation temperatures of H2COH+ are calculated to be 60-110 K, and the column densities are on the order of 10(12)-10(14) cm-2 in Sgr B2, Orion KL, and W51. The fractional abundance of H2COH+ is on the order of 10(-11) to 10-(9), and the ratio of H2COH+ to H2CO is in the range 0.001-0.5 in these objects. The values in Orion KL seem to be consistent with the "early time" values of recent model calculations by Lee, Bettens, & Herbst, but they appear to be higher than the model values in Sgr B2 and W51 even if we take the large uncertainties of column densities of H2CO into account. We suggest production routes starting from CH3OH may play an important role in the formation of H2COH+.  相似文献   
888.
Models of continental crustal magmagenesis commonly invoke theinteraction of mafic mantle-derived magma and continental crustto explain geochemical and petrologic characteristics of crustalvolcanic and plutonic rocks. This interaction and the specificmechanisms of crustal contamination associated with it are poorlyunderstood. An excellent opportunity to study the progressiveeffects of crustal contamination is offered by the compositeplutons of the Alaska Range, a series of nine early Tertiary,multiply intruded, compositionally zoned (Peridotite to granite)plutons. Large initial Sr and Nd isotopic contrasts betweenthe crustal country rock and likely parental magmas allow evaluationof the mechanisms and extents of crustal contamination thataccompanied the crystallization of these ultra-mafic throughgranitic rocks. Three contamination processes are distinguishedin these plutons. The most obvious of these is assimilationof crustal country rock concurrent with magmatic fractionalcrystallization (AFC), as indicated by a general trend towardcrustal-like isotopic signatures with increasing differentiation.Second, many ultramafic and mafic rocks have late-stage phenocrystreaction and orthocumulate textures that suggest interactionwith felsic melt. These rocks also have variable and enrichedisotopic compositions that suggest that this felsic melt wasisotopically enriched and probably derived from crustal countryrock. Partial melt from the flysch country rock may have reactedwith and contaminated these partly crystalline magmas followingthe precipitation and accumulation of the cumulus phenocrystsbut before complete solidification of the magma. This suggeststhat in magmatic mush (especially of ultramafic composition)crystallizing in continental crust, a second distinct processof crustal contamination may be super imposed on AFC or magmamixing involving the main magma body. Finally, nearly all rocks,including mafic and ultramafic rocks, have (87Sr/86Sr)i thatare too high, and (T) Nd that are too low, to represent theexpected isotopic composition of typical depleted mantle. However,gabbro xenoliths with typical depicted-mantle isotopic compositionsare found in the plutons. This situation requires either anadditional enriched mantle component to provide the parentalmagma for these plutons, or some mechanism of crustal contaminationof the parent magma that did not cause significant crystallizationand differentiation of the magma to more felsic compositions.Thermodynamic modeling indicates that assimilation of alkali-andwater-rich partial melt of the metapelite country rock by fractionating,near-liquidus basaltic magma could cause significant contaminationwhile suppressing significant crystallization and differentiation. KEY WORDS: crustal contamination; Alaska Range; isotope geochemistry; zoned plutons; assimilation *Corresponding author. e-mail: preiners{at}u.washington.edu; fax: (206) 543-3836.  相似文献   
889.
G. F. Hartman 《GeoJournal》1996,40(1-2):147-164
Hydroelectric development, forest exploitation, agricultural land use and related human population numbers have increased rapidly during the last 40 years, in the basin of the Nechako River, a major tributary system of the Fraser River. The Kemano project of the Aluminum Company of Canada Ltd. begun in 1950, was the largest industrial scheme in the area. A key feature of the first stage of it was a dam which diverted about 40% of flow of the south branch of the Nechako River, through a tunnel in the mountains, to the Pacific Ocean. In 1987 an agreement for the Kemano Completion Project (KCP), which would have diverted 87% of the flow, was signed. This final phase of the project would have put important fisheries resources of the upper Fraser River at high risk. Mitigation for fisheries protection were inadequate or untested in the system at the time. Potential cumulative impacts of water abstraction, elevated pollution levels, increased water temperature and natural sediment were not addressed. In January 1995 KCP was cancelled but there remain at present no adequate measures to protect the fish and the river ecosystem. These measures are to be negotiated in the future. Future management of the whole Kemano development must provide biologically realistic flow and temperature regimes in the Nechako River, and must deal with cumulative impacts of population and industrial growth. To achieve sustainability of fisheries in the Nechako River and upper Fraser watershed the present approach to the Kemano development must be changed fundamentally. The future of the Kemano development must be set in the context of the whole future of the upper Fraser system. Continued growth and development, as has occurred in the upper Fraser and total basin, can not go on without inimical changes to ecosystem conditions and loss of fisheries resources.  相似文献   
890.
Predictably, in a country such as Britain, with its preponderance of consolidated, sedimentary, mainly fissure-flow aquifers, there is a very large number of springs, many of which are, or have been, used for public supply. Migratory springs are a feature of the British (Ur. Cretaceous) Chalk, the most important British aquifer. The Chalk's low specific yield and high capillary moisture retention together give rise to very considerable fluctuations (more than 33 m in some areas) of the unconfined water table. Along the gentle dip slopes of the Chalk (North and South Downs of southern and southeastern England) springs may migrate laterally for several miles, giving rise to seasonal streams locally known as bournes or lavants. However, springs such as at Duncton, West Sussex, at the base of the much steeper scarp slopes of the Chalk, form point sources, the flows from which tend to be relatively steady; such springs commonly supply and are the original reason for the existence of many of the small towns and villages which nestle along the bases of the chalk scarps of Sussex and Kent.Where the Chalk forms coastal cliffs, a number of springs break out at the base of the cliff between high and low tide levels; there are major chalk coastal springs, for instance, at St. Margaret's Bay (Kent) and at Arish Mells, east of Lulworth Cove, Dorset. Such springs are not used for direct supply (their salinity is usually too high) but are indicators of the presence of local reserves of groundwater for possible future development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号