首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   623篇
  免费   16篇
  国内免费   28篇
测绘学   7篇
大气科学   56篇
地球物理   183篇
地质学   179篇
海洋学   39篇
天文学   144篇
综合类   10篇
自然地理   49篇
  2024年   2篇
  2022年   2篇
  2021年   7篇
  2020年   7篇
  2019年   6篇
  2018年   29篇
  2017年   21篇
  2016年   31篇
  2015年   29篇
  2014年   37篇
  2013年   31篇
  2012年   28篇
  2011年   33篇
  2010年   40篇
  2009年   41篇
  2008年   39篇
  2007年   27篇
  2006年   27篇
  2005年   24篇
  2004年   19篇
  2003年   22篇
  2002年   13篇
  2001年   19篇
  2000年   12篇
  1999年   7篇
  1998年   9篇
  1997年   14篇
  1996年   17篇
  1995年   9篇
  1994年   4篇
  1993年   10篇
  1992年   6篇
  1991年   8篇
  1990年   3篇
  1988年   4篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1968年   1篇
  1965年   1篇
  1963年   1篇
  1959年   1篇
  1957年   1篇
  1954年   1篇
排序方式: 共有667条查询结果,搜索用时 0 毫秒
91.
This paper presents a dendroclimatic analysis of Siberian larch trees sampled along a latitudinal 260-km transect located in the Polar Urals,Russia. Three standardised chronologies were built over a length of 230–293 years using 79 individual tree-ring chronologies collected in the southern,middle and northern parts of the Polar Urals.Bootstrapped correlation functions showed that the annual growth of the larches was mainly influenced by the air temperatures in June and July. The relative role of the temperatures increased from south to north. Daily air temperature data analysis revealed that the duration of the growing season in the northern part of the Polar Urals is 24 days less than that in the southern part. At the present time, air temperatures exceeded threshold of 8~℃, 5 days earlier than it did in the beginning of the 20 th century In response to the increase in the duration of the growing season and the changing winter conditions in the Polar Urals over the last 130 years, radial growth–temperature relationships in larches have weakened;this effect was strongly pronounced in the southern part of the Polar Urals.  相似文献   
92.
93.
94.
The gyroscopic motion of a spin-stabilized satellite due to gravity gradient torques in a circular orbit has been analyzed to varying degrees in numerous publications. This paper shows that the restriction to a circular orbit is, in fact, not essential and with a slight increase in complexity, noncircular orbits may be treated. More importantly, a uniform regression of the orbital node can also be accounted for. The general results are expressed in closed form using Jacobian elliptic functions. Finally, and this is perhaps most important, certain algebraic integrals of the precession are given which can be used to place limits on the excursions of the spin axis without actually solving for the motion. This allows one to design orientations such that the maximum angle between the orbit normal and spin axis never exceeds a specific amount even though the orbit normal is in precession.  相似文献   
95.
A spectrum of Mars of unprecedented quality was obtained in the range of 904-1183 Å with a spectral resolution of 0.2 Å using the Far Ultraviolet Spectroscopic Explorer. Besides marking the first detection of molecular hydrogen on Mars (Krasnopolsky and Feldman, Science 2001 294, 1914-1917), the spectrum also revealed many emission lines of H, O, N, C, Ar, He, N+, C+, and Ar+ and the bands of N2 and CO. The spectrum makes it possible to study the emission multiplet structures and the component ratios and to separate many of the blended lines. From the argon lines, we retrieved Ar mixing ratios of 1.5 and 1.3% at 150 and 130 km, respectively, in excellent agreement with the Viking mass spectrometric measurements of 1.6% in the lower atmosphere. The He 584-Å emission observed in second order also agrees with the Extreme Ultraviolet Explorer detection of He on Mars. The observed spectrum may be used as a database to study specific problems such as the dayglow excitation, radiative transfer, and composition in Mars' upper atmosphere.  相似文献   
96.
A usual event, called anisotropic cosmic-ray enhancement (ACRE), was observed as a small increase (\({\leq}\,5\%\)) in the count rates of polar neutron monitors during 12?–?19 UT on 07 June 2015. The enhancement was highly anisotropic, as detected only by neutron monitors with asymptotic directions in the southwest quadrant in geocentric solar ecliptic (GSE) coordinates. The estimated rigidity of the corresponding particles is \({\leq}\,1\) GV. No associated detectable increase was found in the space-borne data from the Geostationary Operational Environmental Satellite (GOES), the Energetic and Relativistic Nuclei and Electron (ERNE) on board the Solar and Heliospheric Observatory (SOHO), or the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instruments, whose sensitivity was not sufficient to detect the event. No solar energetic particles were present during that time interval. The heliospheric conditions were slightly disturbed, so that the interplanetary magnetic field strength gradually increased during the event, followed by an increase of the solar wind speed after the event. It is proposed that the event was related to a crossing of the boundary layer between two regions with different heliospheric parameters, with a strong gradient of low-rigidity (\({<}\,1\) GV) particles. It was apparently similar to another cosmic-ray enhancement (e.g., on 22 June 2015) that is thought to have been caused by the local anisotropy of Forbush decreases, with the difference that in our case, the interplanetary disturbance was not observed at Earth, but passed by southward for this event.  相似文献   
97.
The paper discusses the results of the research devoted to the preservation of cultural heritage carried out within last two decades in Slovakia. The aim of the study depended on monitoring of selected castle rocks showing instability problems due to extremely slow displacements of creep character. Apart from traditional methods of investigation at one test site (Spis Castle), authors implemented in their work the study of thermal expansion of the rocks as a result of seasonal periodic temperature changes having potential influence on displacements and numerical modeling in order to understand better the landslide failure mechanism. The results obtained from all study sites confirmed that even slow movements have to be implemented into preservation and stabilization works in order to safeguard the sites of great historic value.  相似文献   
98.
99.
100.
Mineralogy and Petrology - Contemporary mineralogy and geochemistry are concerned with understanding and deciphering processes that occur near the surface of the Earth. These processes are...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号