首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   4篇
  国内免费   1篇
测绘学   18篇
大气科学   5篇
地球物理   52篇
地质学   62篇
海洋学   5篇
天文学   13篇
自然地理   10篇
  2023年   1篇
  2022年   5篇
  2020年   5篇
  2019年   5篇
  2018年   15篇
  2017年   9篇
  2016年   5篇
  2015年   9篇
  2014年   7篇
  2013年   16篇
  2012年   5篇
  2011年   7篇
  2010年   9篇
  2009年   5篇
  2008年   5篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
31.
The Cadmium Zinc Telluride Imager (CZTI) is a high energy, wide-field imaging instrument on AstroSat. CZTI’s namesake Cadmium Zinc Telluride detectors cover an energy range from 20 keV to \(>200\) keV, with 11% energy resolution at 60 keV. The coded aperture mask attains an angular resolution of 17\(^\prime \) over a 4.6\(^\circ \) \(\times \) 4.6\(^\circ \)  (FWHM) field-of-view. CZTI functions as an open detector above 100 keV, continuously sensitive to GRBs and other transients in about 30% of the sky. The pixellated detectors are sensitive to polarization above \(\sim \)100 keV, with exciting possibilities for polarization studies of transients and bright persistent sources. In this paper, we provide details of the complete CZTI instrument, detectors, coded aperture mask, mechanical and electronic configuration, as well as data and products.  相似文献   
32.
33.
Scanning Sky Monitor (SSM) onboard AstroSat is an Xray sky monitor in the soft X-ray band designed with a large field of view to detect and locate transient X-ray sources and alert the astronomical community about interesting phenomena in the X-ray sky. SSM comprises position sensitive proportional counters with 1D coded mask for imaging. There are three detector units mounted on a platform capable of rotation which helps covering about 50% of the sky in one full rotation. This paper discusses the elaborate details of the instrument and few immediate results from the instrument after launch.  相似文献   
34.
The classic $F$ and $G$ Taylor series of Keplerian motion are extended to solve the Stark problem and to use the generalized Sundman transformation. Exact recursion formulas for the series coefficients are derived, and the method is implemented to high order via a symbolic manipulator. The results lead to fast and accurate propagation models with efficient discretizations. The new $F$ and $G$ Stark series solutions are compared to the Modern Taylor Series (MTS) and 8th order Runge–Kutta–Fehlberg (RKF8) solutions. In terms of runtime, the $F$ and $G$ approach is shown to compare favorably to the MTS method up to order 20, and both Taylor series methods enjoy approximate order of magnitude speedups compared to RKF8 implementations. Actual runtime is shown to vary with eccentricity, perturbation size, prescribed accuracy, and the Sundman power law. The method and results are valid for both the Stark and the Kepler problems. The effects of the generalized Sundman transformation on the accuracy of the propagation are analyzed. The Taylor series solutions are shown to be exceptionally efficient when the unity power law from the classic Sundman transformation is applied. An example low-thrust trajectory propagation demonstrates the utility of the $F$ and $G$ Stark series solutions.  相似文献   
35.
Autospectra in the 2–13 month range, computed from mean monthly horizontal intensity on quiet days at Trivandrum, situated close to the dip equator, suggest an exceedingly large semi-annual modulation of the field confined to an interval of about 5 hr centred at 1000 LT. The amplitude of the semi-annual oscillation at this station, derived from power density, is greater than 19 γ at 1000 LT. Between 1900 and 0500 LT, spectral lines, corresponding to a period of six months, are not observed above the continuum. Spectral densities from observations at two other electrojet stations in India, Kodaikanal and Annamalainagar, and at Alibag, outside the electrojet, establish the existence of an appreciable enhancement of the semi-annual oscillation of the field in the equatorial electrojet belt. Similar computations of spectra using observations on all days, however, suggest a secondary component in the evening sector. This component is not enhanced in the equatorial electrojet belt. It is concluded that while in low latitudes the daytime component is largely associated with the modulation of Sq currents, in the electrojet belt it appears to be due entirely to a semi-annual modulation of the equatorial electrojet. It is also concluded that the secondary component, observed in the evening sector in low latitude and equatorial stations, is associated purely with the modulation of the ring current by disturbance. The two components of the semi-annual variation observed at the Indian stations have also been noticed at several stations between geomagnetic latitudes N54.6° and S41.8°. It is also observed that the association of the semi-annual component with geomagnetic latitude is confined to the evening-night component.  相似文献   
36.
Scaling aspects of river flow routing are studied by comparing two flow routing schemes, one designed for use in coupled general circulation models (GCMs) and operated at large spatial scales (~350 km), and the other designed for use in typical hydrological applications at small spatial scales (~25 km). The same runoff data are used as input into the two routing schemes, and comparisons are made between mean annual, mean monthly and daily streamflow simulated at four locations within the Mackenzie River Basin. The results suggest that for the purpose of realistically modelling monthly streamflow at the mouth of the rivers in GCMs, flow routing at large spatial scales gives similar results. However, the amplitude of the annual streamflow cycle is slightly but characteristically larger, when routing is performed at large spatial scales. Flow routing at large spatial scales also results in overestimation of high flows, while low flows are underestimated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
37.
Dokriani Glacier is regarded as one of the important glaciers of Bhagirathi River basin, which fed river Ganges. The length of the glacier is about 4.6 km, and snout elevation is about 4028 m m.s.l. The mass balance of this glacier was calculated using field-based measurements for few years during 1994 to 2000. However, due to remote and poor accessibility, the field-based measurements could not continue; thus, remote sensing-based methods become useful tool to estimate the long-term mass balance of the glacier. In this study, glacier mass balance has been determined using accumulation area ratio (AAR) method. Remote sensing data sets, e.g. Landsat TM, ETM?+?and OLI, have been used to estimate AAR for different years from 1994 to 2014. An attempt has also been made to develop a mathematical relationship between remote sensing-derived AAR and field-observed mass balance data of the glacier. Further, this relationship has been used to estimate mass balance of the glacier for different years using remote sensing-derived AAR. Estimated mass balance was validated from ground-observed mass balance for few years. The field-observed and remote sensing-derived mass balance data are compared and showed high correlation. It has been observed that AAR for the Dokriani Glacier varies from 0.64 to 0.71. Mass balance of the glacier was observed between ??15.54 cm and ??50.95 cm during the study period. The study highlights the application of remote sensing in mass balance study of the glaciers and impact of climate change in glaciers of Central Indian Himalaya.  相似文献   
38.
The two component extreme value (TCEV) distribution has recently been shown to account for most of the characteristics of the real flood experience. A new method of parameter estimation for this distribution is derived using the principle of maximum entropy (POME). This method of parameter estimation is suitable for application in both the site-specific and regional cases and appears simpler than the maximum likelihood estimation method. Statistical properties of the regionalized estimation were evaluated using a Monte Carlo approach and compared with those of the maximum likelihood regional estimators.  相似文献   
39.
Significant results from several array of magnetometers deployed in India to probe deep geoelectrical structures of the crust and the upper mantle are reviewed in this paper. Emphasis is on critical appraisal of earlier results so that the article summarizes what has been done so far and what caution is to be taken on future work. Two large-scale arrays over northwest and peninsular India during 1979–80, have been followed up with six more linear or two-dimensional arrays over different parts of the country. “Trans-Himalayan” conductor aligned along the strike of Aravalli range, delineated by arrays over northwest India, essentially represents one of the major continental induction anomalies mapped by electromagnetic methods. Efforts for quantifying the induction effects through numerical models are shown to be constrained due to the large inter-station spacing, lack of information on the regional background conductivity distribution and the non-inclusion of the frequency dependence of induction effects. A more comprehensive modelling, not biased by these factors, enables approximating the Trans-Himalayan conductor as an asymmetric domal upwarp in the middle and lower crust located between Delhi-Hardwar ridge and Moradabad fault. Numerical modelling results for southern peninsular, despite the constraints, indicate that the strong and complex induction pattern can be adequately attributed to the combination of conductors connected with triple junction between Indo-Ceylon Graben, Comorin ridge and the west coast rifting. Induction features derived from the Valsad array, operated over basalt-covered region of western India, demarcate an enhanced conducting zone beneath Plume-associated triple junction in the Gulf of Cambay, apart from characterizing the presently active seismic zone as a resistive block.  相似文献   
40.
Landslide susceptibility zonation (LSZ) is necessary for disaster management and planning development activities in mountainous regions. A number of methods, viz. landslide distribution, qualitative, statistical and distribution-free analyses have been used for the LSZ studies and they are again briefly reviewed here. In this work, two methods, the Information Value (InfoVal) and the Landslide Nominal Susceptibility Factor (LNSF) methods that are based on bivariate statistical analysis have been applied for LSZ mapping in a part of the Himalayas. Relevant thematic maps representing various factors (e.g., slope, aspect, relative relief, lithology, buffer zones along thrusts, faults and lineaments, drainage density and landcover) that are related to landslide activity, have been generated using remote sensing and GIS techniques. The LSZ derived from the LNSF method, has been compared with that produced from the InfoVal method and the result shows a more realistic LSZ map from the LNSF method which appears to conform to the heterogeneity of the terrain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号