首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68201篇
  免费   1520篇
  国内免费   505篇
测绘学   1722篇
大气科学   5538篇
地球物理   14268篇
地质学   22130篇
海洋学   5966篇
天文学   15581篇
综合类   138篇
自然地理   4883篇
  2020年   513篇
  2019年   534篇
  2018年   1009篇
  2017年   976篇
  2016年   1450篇
  2015年   1079篇
  2014年   1497篇
  2013年   3367篇
  2012年   1601篇
  2011年   2404篇
  2010年   2061篇
  2009年   3061篇
  2008年   2797篇
  2007年   2514篇
  2006年   2560篇
  2005年   2221篇
  2004年   2321篇
  2003年   2151篇
  2002年   2048篇
  2001年   1828篇
  2000年   1794篇
  1999年   1555篇
  1998年   1557篇
  1997年   1512篇
  1996年   1303篇
  1995年   1223篇
  1994年   1107篇
  1993年   1015篇
  1992年   958篇
  1991年   821篇
  1990年   1015篇
  1989年   864篇
  1988年   756篇
  1987年   939篇
  1986年   826篇
  1985年   1032篇
  1984年   1202篇
  1983年   1137篇
  1982年   1024篇
  1981年   981篇
  1980年   844篇
  1979年   822篇
  1978年   874篇
  1977年   797篇
  1976年   755篇
  1975年   705篇
  1974年   709篇
  1973年   717篇
  1972年   445篇
  1971年   391篇
排序方式: 共有10000条查询结果,搜索用时 406 毫秒
351.
Woody, subalpine shrubs and grasses currently surround Lake Rutundu, Mount Kenya. Multiple proxies, including carbon isotopes, pollen and grass cuticles, from a 755‐cm‐long core were used to reconstruct the vegetation over the past 38 300 calendar years. Stable carbon‐isotope ratios of total organic carbon and terrestrial biomarkers from the lake sediments imply that the proportion of terrestrial plants using the C4 photosynthetic pathway was greater during the Late Pleistocene than in the Holocene. Pollen data show that grasses were a major constituent of the vegetation throughout the Late Pleistocene and Holocene. The proportion of grass pollen relative to the pollen from other plants was greatest at the last glacial maximum (LGM). Grass cuticles confirm evidence that C4 grass taxa were present at the LGM and that the majority followed the cold‐tolerant NADP‐MEC4 subpathway. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
352.
This paper reports results from an experiment designed to measure the nascent rovibrational population of H2 molecules that have formed through the heterogeneous recombination of H atoms on the surface of cosmic dust analogues under conditions approaching those of the interstellar medium (ISM). H2 that has formed on a highly oriented pyrolytic graphite (HOPG) surface has been detected, using laser induced resonance-enhanced multi-photon ionization (REMPI), in the v = 1 (J= 0–3) rovibrational states at surface temperatures of 30 K and 50 K. These excited product molecules display rotational temperatures significantly higher than the target surface temperature. These first results suggest that a considerable proportion of the binding energy released on formation of the H2 is deposited in the surface, in addition to internal excitation of the product molecules. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
353.
354.
355.
356.
The evolution of the martian atmosphere with regard to its H2O inventory is influenced by thermal loss processes of H, H2, nonthermal atmospheric loss processes of H+, H2+, O, O+, CO2, and O2+ into space, as well as by chemical weathering of the surface soil. The evolution of thermal and nonthermal escape processes depend on the history of the intensity of the solar XUV radiation and the solar wind density. Thus, we use actual data from the observation of solar proxies with different ages from the Sun in Time program for reconstructing the Sun's radiation and particle environment from the present to 3.5 Gyr ago. The correlation between mass loss and X-ray surface flux of solar proxies follows a power law relationship, which indicates a solar wind density up to 1000 times higher at the beginning of the Sun's main sequence lifetime. For the study of various atmospheric escape processes we used a gas dynamic test particle model for the estimation of the pick up ion loss rates and considered pick up ion sputtering, as well as dissociative recombination. The loss of H2O from Mars over the last 3.5 Gyr was estimated to be equivalent to a global martian H2O ocean with a depth of about 12 m, which is smaller than the values reported by previous studies. If ion momentum transport, a process studied in detail by Mars Express is significant on Mars, the water loss may be enhanced by a factor of about 2. In our investigation we found that the sum of thermal and nonthermal atmospheric loss rates of H and all nonthermal escape processes of O to space are not compatible with a ratio of 2:1, and is currently close to about 20:1. Escape to space cannot therefore be the only sink for oxygen on Mars. Our results suggest that the missing oxygen (needed for the validation of the 2:1 ratio between H and O) can be explained by the incorporation into the martian surface by chemical weathering processes since the onset of intense oxidation about 2 Gyr ago. Based on the evolution of the atmosphere-surface-interaction on Mars, an overall global surface sink of about 2×1042 oxygen particles in the regolith can be expected. Because of the intense oxidation of inorganic matter, this process may have led to the formation of considerable amounts of sulfates and ferric oxides on Mars. To model this effect we consider several factors: (1) the amount of incorporated oxygen, (2) the inorganic composition of the martian soil and (3) meteoritic gardening. We show that the oxygen incorporation has also implications for the oxidant extinction depth, which is an important parameter to determine required sampling depths on Mars aimed at finding putative organic material. We found that the oxidant extinction depth is expected to lie in a range between 2 and 5 m for global mean values.  相似文献   
357.
358.
In this paper we show that a change in the signs of some of the metric components of the solution of the field equations for the classical cosmic string results in a solution which we interpret as a time-dependent wall composed of tachyons. We show that the walls have the property of focusing the paths of particles which pass through them. As an illustration of this focusing, we demonstrate the results of a simple simulation of the interaction between one such tachyon wall and a rotating disk of point masses. This interaction leads to the temporary formation of spiral structures. These spiral structures exist for a time on the order of one galactic rotation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
359.
Litvinenko  Yuri E.  Craig  I.J.D. 《Solar physics》2003,218(1-2):173-181
Flux pile-up magnetic reconnection is traditionally considered only for incompressible plasmas. The question addressed in this paper is whether the pile-up scalings with resistivity are robust when plasma compressibility is taken into account. A simple analytical argument makes it possible to understand why the transition from a highly compressible limit to the incompressible one is difficult to discern in typical simulations spanning a few decades in resistivity. From a practical standpoint, however, flux pile-up reconnection in a compressible plasma can lead to anomalous electric resistivity in the current sheet and flare-like energy release of magnetic energy in the solar corona.  相似文献   
360.
Vaquero  J.M.  Gallego  M.C.  Sánchez-bajo  F. 《Solar physics》2003,218(1-2):307-317
In the 19th century De la Rue, Stewart, and Loewy carried out a compilation of drawings and photographs of the solar sunspots corresponding to the interval 1832–1868. Using these drawings and photographs, they determined fortnightly values of the percentage of the solar photosphere covered by the sunspots. In this work, we have performed a spectral analysis of these data in order to determine possible periodic signals. In addition to the 11-year solar cycle, short cycles of about 330 days and 30–50 days have been recovered, lacking the 150–160 days period discovered by other authors using several solar activity indicators.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号