首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3482篇
  免费   159篇
  国内免费   61篇
测绘学   94篇
大气科学   287篇
地球物理   761篇
地质学   1360篇
海洋学   246篇
天文学   612篇
综合类   13篇
自然地理   329篇
  2022年   15篇
  2021年   45篇
  2020年   66篇
  2019年   87篇
  2018年   96篇
  2017年   106篇
  2016年   123篇
  2015年   109篇
  2014年   123篇
  2013年   183篇
  2012年   115篇
  2011年   177篇
  2010年   158篇
  2009年   204篇
  2008年   178篇
  2007年   170篇
  2006年   159篇
  2005年   141篇
  2004年   137篇
  2003年   99篇
  2002年   102篇
  2001年   71篇
  2000年   68篇
  1999年   60篇
  1998年   53篇
  1997年   55篇
  1996年   55篇
  1995年   45篇
  1994年   29篇
  1993年   31篇
  1992年   27篇
  1991年   41篇
  1990年   23篇
  1989年   26篇
  1988年   31篇
  1987年   38篇
  1986年   26篇
  1985年   30篇
  1984年   27篇
  1983年   18篇
  1982年   27篇
  1981年   31篇
  1980年   28篇
  1979年   17篇
  1978年   15篇
  1977年   20篇
  1976年   17篇
  1974年   26篇
  1973年   21篇
  1971年   14篇
排序方式: 共有3702条查询结果,搜索用时 15 毫秒
991.
The development of gypsum maze caves under artesian conditions has been simulated. The numerical model simulations show that the evolution of maze caves in this type of setting requires structural preferences such as laterally extended fissure networks in a horizon of the gypsum layer. Without any structural preferences vertical shafts rather than maze caves are predicted to develop. The most important stage for the development of horizontal caves under artesian conditions is found to be the initial karstification period. During this period the structure of the mature conduit system is established. The solutional enlargement of conduits is spatially extended, total dissolution rates are higher than the later ones.  相似文献   
992.
The low-temperature heat capacity of magnesioferrite (MgFe2O4) was measured between 1.5 K and 300 K, and thermochemical functions were derived from the results. No heat capacity anomaly was observed. From our data, we suggest a standard entropy (298.15 K) for magnesioferrite of 120.8±0.6 J mol−1 K−1, which is about 2.4 J mol−1 K−1 higher than previously reported calorimetric studies; but is in rough agreement with predictions from sets of internally consistent thermodynamic data.  相似文献   
993.
Analyses of the chemical and isotopic composition of carbonates rocks recovered from methane seepage areas of the Kodiak Trench, Hydrate Ridge, Monterey Bay Clam Flats, and the Eel River Basin, coupled with the studies of the chemistry of the pore fluids, have shown that these carbonates have grown within the sediment column. Geochemical profiles of pore fluids show that, in deep water seeps (Kodiak Trench—4450 m; Monterey Bay—1000 m; Hydrate Ridge—650 m), δ13C (DIC) values are low (isotopically light), whereas in the Eel River area ( 350–500 m), δ13C (DIC) values are much higher (isotopically heavier). In all cases, the δ13C values indicate that processes of methane oxidation, associated with sulfate reduction, are dominant in the shallow sediments. Data on the isotopic composition of authigenic carbonates found at sites in Kodiak Trench, Eel River Basin South, and Eel River Basin North indicate a variable composition and origin in different geochemical environments. Some of the authigenic carbonates from the study sites show a trend in their δ13C values similar to those of the pore fluids obtained in their vicinity, suggesting formation at relatively shallow depths, but others indicate formation at greater sediment depths. The latter usually consist of high magnesium calcite or dolomite, which, from their high values of δ13C (up to 23‰;) and δ18O (up to 7.5‰), suggest formation in the deeper horizons of the sediments, in the zone of methanogenesis. These observations are in agreement with observations by other workers at Hydrate Ridge, in Monterey Bay, and in the Eel River Basin.  相似文献   
994.
The aim of this paper is to evaluate the role of groundwater and sea weathering on the strength of the chalk rocks exposed on the coastline of the English Channel in Normandy, NW France. We present a study of the rock strength variations of three representative chalk units (Lewes Chalk, Seaford Chalk and Newhaven Chalk) exposed at various locations on the coastal chalk cliffs. The combination of UCS tests and SEM observations have been used (1) on dry natural chalk samples, (2) on chalk samples at various moisture contents, (3) on dry chalk samples submitted to a 10-day cycle of alternating wetting and drying by distilled water and by sea water. Dry chalk samples show low UCS strength (3.46–4 MPa) indicative of very weak rocks. When chalk samples are submitted to progressive water wetting, they present a decrease of UCS strength and Young's modulus of 40% to 50%. This behaviour begins at low values of water content within the chalk, i.e., for a degree of water saturation ranging between 10% and 17%. When chalk samples are submitted to an artificial weathering cycle with distilled water, a decrease in strength is observed, whereas the Young's modulus increases. SEM observations indicate the occurrence of microcracks and particle aggregates in the sample. When chalk samples are submitted to an artificial weathering with sea water, the decrease of UCS strength and Young's modulus achieves a minimum. SEM observations indicate salt crystals within the chalk. On the coastal cliffs of NW France, weathering processes depend both on chalk lithology, which show a range of sensitivity to weathering and on the location of the chalk in the coastal area. Processes allied to the degree of weathering (e.g., salt crystallisation or fresh water disaggregation) differ in the chalk massif, on the cliff face and on the shore platform.  相似文献   
995.
Neutron powder diffraction studies of calcite on heating towards the orientational order–disorder phase transition show that the phase transition is not a simple analogue of an Ising-like transition, but more similar to a rotational analogue of Lindemann melting. The transition is precipitated by the librational amplitude of the carbonate molecular ions exceeding a critical value rather than a result of a statistical entropy of ‘wrong’ orientations. Using tested interatomic potentials the single-particle orientational potential and nearest-neighbour orientational interactions have been calculated.  相似文献   
996.
A dense grid of multichannel high-resolution seismic sections from the Bay of Kiel in the western Baltic Sea has been interpreted in order to reveal the Mesozoic and Cenozoic geological evolution of the northern part of the North German Basin. The overall geological evolution of the study area can be separated into four distinct periods. During the Triassic and the Early Jurassic, E–W extension and the deposition of clastic sediments initiated the movement of the underlying Zechstein evaporites. The deposition ceased during the Middle Jurassic, when the entire area was uplifted as a result of the Mid North Sea Doming. The uplift resulted in a pronounced erosion of Upper Triassic and Lower Jurassic strata. This event is marked by a clear angular unconformity on all the seismic sections. The region remained an area of non-deposition until the end of the Early Cretaceous, when the sedimentation resumed in the area. Throughout the Late Cretaceous the sedimentation took place under tectonic quiescence. Reactivated salt movement is observed at the Cretaceous Cenozoic transition as a result of the change from an extensional to compressional regional stress field. The vertical salt movement influenced the Cenozoic sedimentation and resulted in thin-skinned faulting.  相似文献   
997.
Mineral exploration drillholes and geoelectric prospecting provide for the first time evidence for thrusting of the South Carpathian Paleozoic basement over northerly adjacent Middle Miocene sediments. Investigations were carried out in two locations, 30 km apart, along the northern margin of the Poiana Rusca Mountains, Romania, southwestern Carpathians. Drill holes in both locations encountered weakly consolidated Middle Miocene clay, sand, and fine gravel below Paleozoic low-grade metamorphic rocks. Intersections from various drill holes demonstrate the presence of low-angle thrusting. Kinematic indicators are so far lacking, but with a thrust direction oriented roughly normal to strike of the Poiana Rusca Mountains, minimum displacement is 1–1.4 km in northwestern or northern direction, respectively. Thrusting occurred most likely during the Late Miocene–Pliocene, whereafter Quaternary regional uplift dissected the thrust plane. In the tectonic framework of Neogene dextral translation of the Tisza–Dacia Block against the southerly adjacent Moesian Platform, transtension appears responsible for Middle Miocene basin formation along the northern margin of the Poiana Rusca region. Proceeding collision of the Tisza–Dacia Block with the East European Craton introduced stronger impingement of the Tisza–Dacia Block against the Moesian Platform, leading to a Late Miocene–Pliocene transpressional regime, in which the northern Poiana Rusca basement was thrust over its adjacent Middle Miocene sediments.  相似文献   
998.
Calcium isotope fractionation in calcite and aragonite   总被引:1,自引:0,他引:1  
Calcium isotope fractionation was measured on skeletal aragonite and calcite from different marine biota and on inorganic calcite. Precipitation temperatures ranged from 0 to 28°C. Calcium isotope fractionation shows a temperature dependence in accordance with previous observations: 1000 · ln(αcc) = −1.4 + 0.021 · T (°C) for calcite and 1000 · ln(αar) = −1.9 + 0.017 · T (°C) for aragonite. Within uncertainty the temperature slopes are identical for the two polymorphs. However, at all temperatures calcium isotopes are more fractionated in aragonite than in calcite. The offset in δ44/40Ca is about 0.6‰. The underlying mechanism for this offset may be related to the different coordination numbers and bond strengths of the calcium ions in calcite and aragonite crystals, or to different Ca reaction behavior at the solid-liquid interface. Recently, the observed temperature dependence of the Ca isotope fractionation was explained quantitatively by the temperature control on precipitation rates of calcium carbonates in an experimental setting (Lemarchand et al., 2004). We show that this mechanism can in principle also be applied to CaCO3 precipitation in natural environments in normal marine settings. Following this model, Ca isotope fractionation in marine Ca carbonates is primarily controlled by precipitation rates. On the other hand the larger Ca isotope fractionation of aragonite compared to calcite can not be explained by different precipitation rates. The rate control model of Ca isotope fractionation predicts a strong dependence of the Ca isotopic composition of carbonates on ambient CO32− concentration. While this model is in general accordance with our observations in marine carbonates, cultured specimens of the planktic foraminifer Orbulina universa show no dependence of Ca-isotope fractionation on the ambient CO32− concentration. The latter observation implies that the carbonate chemistry in the calcifying vesicles of the foraminifer is independent from the ambient carbonate ion concentration of the surrounding water.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号