首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   0篇
地球物理   1篇
地质学   13篇
海洋学   2篇
天文学   66篇
  2022年   1篇
  2021年   1篇
  2017年   3篇
  2016年   4篇
  2014年   1篇
  2012年   4篇
  2011年   6篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1989年   1篇
  1988年   5篇
  1987年   1篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有82条查询结果,搜索用时 31 毫秒
51.
The physical properties of the quiet solar chromosphere–corona transition region are studied. Here the structure of the solar atmosphere is governed by the interaction of magnetic fields above the photosphere. Magnetic fields are concentrated into thin tubes inside which the field strength is great. We have studied how the plasma temperature, density, and velocity distributions change along a magnetic tube with one end in the chromosphere and the other one in the corona, depend on the plasma velocity at the chromospheric boundary of the transition region. Two limiting cases are considered: horizontally and vertically oriented magnetic tubes. For various plasma densities we have determined the ranges of plasma velocities at the chromospheric boundary of the transition region for which no shock waves arise in the transition region. The downward plasma flows at the base of the transition region are shown to be most favorable for the excitation of shock waves in it. For all the considered variants of the transition region we show that the thermal energy transfer along magnetic tubes can be well described in the approximation of classical collisional electron heat conduction up to very high velocities at its base. The calculated extreme ultraviolet (EUV) emission agrees well with the present-day space observations of the Sun.  相似文献   
52.
Two competing fundamental hypotheses are usually postulated in the solar coronal heating problem: heating by nanoflares and heating by waves. In the latter it is assumed that acoustic and magnetohydrodynamic disturbances whose amplitude grows as they propagate in a medium with a decreasing density come from the convection zone. The shock waves forming in the process heat up the corona. In this paper we draw attention to yet another very efficient shock wave generation process that can be realized under certain conditions typical for quiet regions on the Sun. In the approximation of stationary dissipative hydrodynamics we show that a shock wave can be generated in the quiet solar chromosphere–corona transition region by the fall of plasma from the corona into the chromosphere. This shock wave is directed upward, and its dissipation in the corona returns part of the kinetic energy of the falling plasma to the thermal energy of the corona. We discuss the prospects for developing a quantitative nonstationary model of the phenomenon.  相似文献   
53.
Two-dimensional stationary magnetic reconnection models that include a thin Syrovatskii-type current sheet and four discontinuous magnetohydrodynamic flows of finite length attached to its endpoints are considered. The flow pattern is not specified but is determined from a self-consistent solution of the problem in the approximation of a strong magnetic field. Generalized analytical solutions that take into account the possibility of a current sheet discontinuity in the region of anomalous plasma resistivity have been found. The global structure of the magnetic field in the reconnection region and its local properties near the current sheet and attached discontinuities are studied. In the reconnection regime in which reverse currents are present in the current sheet, the attached discontinuities are trans-Alfvénic shock waves near the current sheet endpoints. Two types of transitions from nonevolutionary shocks to evolutionary ones along discontinuous flows are shown to be possible, depending on the geometrical model parameters. The relationship between the results obtained and numerical magnetic reconnection experiments is discussed.  相似文献   
54.
We discuss the peculiarities of fast magnetic reconnection in the essentially nonequilibrium magnetosphere of a compact relativistic object: a neutron star, a magnetar, a white dwarf. Such a magnetosphere is produced by the interaction of a large-amplitude shock wave with a strong stellar magnetic field. We present an analytical solution of the generalized two-dimensional problem on the magnetosphere’s structure, the shape of its boundary, and the direct and reverse currents in a reconnecting current sheet. The uncompensated magnetic force acting on the reverse current is determined. Characteristic parameters of the nonequilibrium magnetosphere of compact stellar objects are estimated. We show that the excess magnetic energy of the magnetosphere is comparable to the mechanical energy brought into it by the shock at the instant of impact. The possibility of particle acceleration to enormous energies is discussed.  相似文献   
55.
We have developed three types of mathematical models to describe the mechanisms of plasma heating in the corona by intense heat fluxes from a super-hot (T e ? 108 K) reconnecting current layer in connection with the problem of energy transport in solar flares. We show that the heat fluxes calculated within the framework of self-similar solutions using Fourier’s classical law exceed considerably the real energy fluxes known from present-day multi-wavelength observations of flares. This is because the conditions for the applicability of ordinary heat conduction due to Coulomb collisions of thermal plasma electrons are violated. Introducing anomalous heat conduction due to the interaction of thermal runaway electrons with ion-acoustic turbulence does not give a simple solution of the problem, because it produces unstable temperature profiles. Themodels incorporating the effect of collisional heat flux relaxation describe better the heat transport in flares than Fourier’s law and anomalous heat conduction.  相似文献   
56.
In connection with the RHESSI satellite observations of solar flares, which have revealed new properties of hard X-ray sources during flares, we offer an interpretation of these properties. The observed motions of coronal and chromospheric sources are shown to be the consequences of three-dimensional magnetic reconnection at the separator in the corona. During the first (initial) flare phase, the reconnection process releases an excess of magnetic energy related predominantly to themagnetic tensions produced before the flare by shear plasma flows in the photosphere. The relaxation of a magnetic shear in the corona also explains the downward motion of the coronal source and the decrease in the separation between chromospheric sources. During the second (main) flare phase, ordinary reconnection dominates; it describes the energy release in the terms of the “standard model” of large eruptive flares accompanied by the rise of the coronal source and an increase in the separation between chromospheric sources.  相似文献   
57.
The energy distribution of the fast electrons captured into a collapsing magnetic trap in the solar corona is calculated as a function of the trap length and diameter. It is shown that if the electrons injected into the trap have a power-law spectrum, then their spectrum remains a power-law one with the same slope throughout the acceleration process for both the Fermi and betatron acceleration mechanisms. For electrons with a thermal injection spectrum, the model predicts two types of hard X-ray sources, thermal and nonthermal. Thermal sources are formed in traps dominated by the betatron mechanism. Nonthermal sources with a power-law spectrum are formed when electrons are accelerated by the Fermi mechanism.  相似文献   
58.
We consider a stationary two-dimensional model of magnetic reconnection in plasma. The model includes a current sheet and four MHD shock waves attached to its endpoints. The solution to the problem has been found in an analytical form that admits of efficient numerical implementation. We analyze in detail the structure of the magnetic field in the reconnection region and its variation with model parameters.  相似文献   
59.
The behaviour of the accelerated electrons escaping from a high-temperature source of primary energy in a solar flare is investigated. The direct current of fast electrons is supposed to be balanced by the reverse current of thermal electrons in the ambient colder plasma inside flare loops. The self-consistent kinetic problem is formulated; and the reverse-current electric field and the fast electron distribution function are found from its solution. The X-ray bremsstrahlung polarization is then calculated from the distribution function. The difference of results from those in the case of thermal runaway electrons (Diakonov and Somov, 1988) is discussed. The solutions with and without account of the affect of a reverse-current electric field are also compared.  相似文献   
60.
Impulsive heating of the upper chromosphere by a very powerful thermal flux is studied as the cause of hard X-rays during a solar flare. The electron temperature at the boundary between the corona and chromosphere is assumed to change in accordance with the hard X-ray intensity in an elementary flare burst (EFB). A maximum value of about 108 K is reached after 5 s, after which the boundary temperature decreases. These high-temperature changes lead to fast propagation of heat into the chromosphere. Numerical solution of the hydrodynamic equations, which take into account all essential dissipative processes, shows that classical heat conduction is not valid due to heat flux saturation in the case of impulsive heating from a high-temperature source. The saturation effect and hydrodynamic flow along a magnetic field lead to electron temperature and density distributions such that the thermal X-ray spectrum of a high-temperature plasma can be well enough approximated by an exponential law or by two power-law spectra. According to this dissipative thermal model for the source of hard X-rays, the emission measure of the high-temperature plasma increases monotonously during the whole EFB even after the temperature maximum. Some results for the low-temperature region are discussed in connection with short-lived chromospheric bright points.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号