首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   0篇
地球物理   1篇
地质学   13篇
海洋学   2篇
天文学   66篇
  2022年   1篇
  2021年   1篇
  2017年   3篇
  2016年   4篇
  2014年   1篇
  2012年   4篇
  2011年   6篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1989年   1篇
  1988年   5篇
  1987年   1篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
11.
Somov  B. V.  Syrovatskii  S. I. 《Solar physics》1974,38(2):415-417
Solar Physics - Most of the energy of particles accelerated in a flare is used for the creation of a high-temperature flare region, the structure of which is determined by the heat conduction...  相似文献   
12.
This study examines hydration–diffusion in the metaluminous haplogranite system at 200 MPa H2O and 800–300°C. At 800°C hydration is accompanied by melting and uphill diffusion of sodium from anhydrous glass toward the region of hydration and melting, whereas potassium diffuses away from the hydration front and into anhydrous glass. Silicon and aluminum are simply diluted upon hydration. There is no change in molecular Al/(Na + K) throughout the entire hydration-diffusion aureole and, therefore, (1) there is no loss of alkalis to the vapor, and (2) K migrates to replace Na in order to maintain local charge balance required by IVAl. Alkali diffusion occurs over a viscosity contrast from 104.1 Pa s in hydrous liquid to 1011.8–1013.5 Pa s in anhydrous glass. From these results, we interpret that: (1) Na is structurally or energetically favored over K as a charge-balancing cation for IVAl in hydrous granitic liquids, whereas the opposite behavior has been observed for anhydrous melts, and (2) the diffusion of alkalis through silicate melts is largely independent of viscosity. Results from 600°C are similar to those at 800°C, but hydration at 300°C involves a loss of Na and concomitant increase in molar Al/(Na + K) in the hydration zone due to hydrogen-alkali exchange between fluid and glass. Hydration behavior at 400°C is transitional between those at 300°C and 600°C, suggesting that the change in hydration mechanism occurs near the glass transition.  相似文献   
13.
Based on a topological model for the magnetic field of a solar active region (AR), we suggest a criterion for the existence of magnetic null points on the separators in the corona. With the problem of predicting solar flares in mind, we have revealed a model parameter whose decrease means that the AR evolves toward a major eruptive flare. We analyze the magnetic field evolution for AR 9077 within two days before the Bastille Day flare on July 14, 2000. The coronal conditions are shown to have become more favorable for magnetic reconnection, which led to a 3B/X5.7 eruptive flare.  相似文献   
14.
A model for magnetic reconnection in high-conductivity plasma in the solar corona is analyzed in a strong-magnetic-field approximation. The model includes a Syrovatskii current layer and magnetohydrodynamic (MHD) discontinuities attached to the ends of the layer. A two-dimensional analytical solution for the magnetic field is used to compute the distributions of the plasma flow velocity and plasma density in the vicinity of the corresponding current configuration. The properties of jumps in the density and velocity along the attached discontinuities are studied. Based on the character of the variations of the magnetic field and plasma flows at the MHD discontinuities, it is shown that, with the parameter values considered, an MHDdiscontinuity can include regions of trans-Alfvénic, fast, and slowshocks. The results obtained could be useful to explain the presence of “super-hot” (with effective electron temperatures exceeding 10 keV) plasma in solar flares. Other possible applications of the theory of discontinuous flows near regions of magnetic reconnection to analogous non-stationary phenomena in astrophysical plasmas are noted.  相似文献   
15.
New results from electrophotometric scanning of the solar disk in the HeI λ 10830 Å and Hα lines are presented. The intensity at the center of the HeI λ 10830.30 Å line is 1–3% higher in the regions of coronal holes than in quiescent regions; this is accompanied by a decrease in the size and contrast of the chromospheric network compared to the network in quiescent regions. Our observations in the HeI line revealed chains of “dark points” surrounding coronal holes. The Hα±0.5 observations show increased velocities of ascent near the dark points compared to the velocities inside coronal holes and in quiescent regions. It is proposed that the intensification and acceleration of the flows of solar plasma from the dark points are due to reconnection of the magnetic fields of the bipolar chromospheric network and the predominantly unipolar magnetic field inside the coronal holes. Our observations suggest that the same reconnection process takes place near the temperature minimum, in the presence of certain conditions at the boundary between coronal holes and bipolar active regions. The reconnection process produces plasma flows from the chromosphere to the corona, which are sufficient to form prominences.  相似文献   
16.
We present a simple model of high-temperature (T≥108 K) turbulent current sheets forming in magnetic-reconnection regions on the Sun. The model is based on an empirical formula by de Kluiver et al. (1991) for turbulent plasma conductivity and is apparently valid over a wide range of physical conditions. A comparison of the new results with known test calculations suggests agreement between the theoretical and empirical approaches to calculating the anomalous conductivity in turbulent plasma. The energy release in current sheets is powerful enough for flares, coronal transients, and coronal mass ejections to be interpreted.  相似文献   
17.
The Catoca kimberlite pipe is among the world’s largest primary diamond deposits. The Catoca volcanic edifice is only slightly eroded. Kimberlitic rocks of various facies compose a crater of about 1 km in diameter and a diatreme. The structure of the pipe and mining conditions of the deposit are complicated by intense intrapipe tectonic processes related to large-amplitude subsidence. Based on geological data, we propose a structural model of the deposit and a paleovolcanological model of the Catoca pipe formed during a full cycle beginning with a stage of active volcanism and completed by stages of gradually waning volcanic activity and sedimentation. It is suggested that the banded tuffisitic kimberlite of the crater zone was deposited at the stage of active volcanic eruption from specific pyroclastic suspension as a low-viscosity mixture of crystals and aqueous sol rich in serpentine.  相似文献   
18.
Numerical simulations of the magnetic reconnection process in a current sheet show that, in some cases, MHD shocks appear to be attached to edges of the sheet. The appearance of the shocks may be considered to be a result of splitting of the sheet. In the present paper we suppose that this splitting takes place in consequence of non-evolutionarity of the reconnecting current sheet as a discontinuity. The problem of time evolution of small perturbations does not have a unique solution for a non-evolutionary discontinuity, and it splits into other (evolutionary) discontinuities. Such an approach allows us to determine conditions under which the splitting of the-sheet occurs. The main difficulty of this approach is that a current sheet is not reduced to a classified 1D discontinuity, because inhomogeneity of flow velocity inside the sheet is two-dimensional. To formulate the non-evolutionarity problem, we solve the linear MHD equations inside and outside the sheet and deduce linearized 1D boundary conditions at its surface. We show that for large enough conductivity, small perturbations exist which interact with the sheet as with a discontinuity. Then we obtain a non-evolutionarity criterion, with respect to these perturbations, in the form of a restriction on the flow velocity across the surface of the sheet.  相似文献   
19.
20.
Simple self-consistent models for non-neutral current sheets are considered. Characteristics of high-temperature turbulent current sheets (HTCS) with a small transverse component of magnetic field are determined for conditions in the solar corona. The energy output of such an HTCS is much larger than that of a neutral sheet. This makes it possible to consider the HTCS as an energy source not only in long-lived X-ray loops but also in flaring loops during the not or main phase of a flare. In this case, the magnetic reconnection velocity agrees with the observed velocity of the loop rise. Thus, these phenomena can be interpreted as a result of magnetic reconnection, for example, between new flux emerging from under the photosphere and an old magnetic field.The role of a longitudinal magnetic field in a current sheet is less important for HTCS. As a result of the compression of a longitudinal field, there appears an electric current circulating around the sheet. This current may induce strong Joule heating, if the compression is large. This additional heating is realized because of the annihilation of the main component, not the longitudinal component of magnetic field. The effect is small for HTCS, but may be significant for preflare current sheets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号