首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
大气科学   1篇
地球物理   7篇
地质学   7篇
天文学   15篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1995年   1篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1981年   1篇
  1976年   1篇
  1972年   2篇
排序方式: 共有30条查询结果,搜索用时 203 毫秒
21.
Proper numerical simulation of the Earth’s climate change requires reliable knowledge of solar irradiance and its variability on different time scales, as well as the wavelength dependence of this variability. As new measurements of the solar spectral irradiance have become available, so too have new reconstructions of historical solar irradiance variations, based on different approaches. However, these various solar spectral irradiance reconstructions have not yet been compared in detail to quantify differences in their absolute values, variability, and implications for climate and atmospheric studies. In this paper we quantitatively compare five different reconstructions of solar spectral irradiance changes during the past four centuries, in order to document and analyze their differences. The impact on atmosphere and climate studies is discussed in terms of the calculation of short wave solar heating rates.  相似文献   
22.
A complex analysis in different radio ranges of the evolutionary features of the 3 February, 1983 flare (0543-0619-0812 UT) has shown that the flare is a prolonged ( 15 hr) process of energy release and particle acceleration that gradually extends to still greater zones of the active region (AR) magnetosphere in both area and altitude. Observations from the Siberian Solar Radio Telescope obtained at = 5.2 cm indicate that the flare was preceded by quasi-periodical brightness enhancements with a period of 6–7 min of two sources of size 20 and with a brightness temperature of 107 K.During the flare maximum phase, a type II burst with harmonic structure and the subsequent type FC II continuum with fine structure were both observed in the meter band. It has been found that zebra-structure appearances correlate with the H-flare kernel brightenings at loop tops.The observed characteristics of the type II burst and of the type FC II continuum treated in this paper are interpreted in terms of the complex flare flow structure, involving forward and backward shock waves.  相似文献   
23.
Behind-the-limb flares provide a unique opportunity for the study of vertical source structures of microwave bursts and dynamic flare processes. Based on complex observational data related to the outstanding solar proton event on 16 February, 1984, the development of burst emission at a height z 200000 km above the photosphere has been investigated. A comparison with the associated X-ray emission measured aboard various spacecraft yields a time lag of about 1 min between the onset of the unocculted impulsive HXR-emission and the onsets of the X-ray and microwave emissions occulted by the solar limb. The lag corresponds to a range of speeds of the propagation of the flare volume of about 3000–5000 km s–1. Considering competing transport agents that could account for such expansion of the source volume, a qualitative model of shock-wave activation of loops successively reaching into larger coronal heights is proposed.From a discussion of the possible emission processes involved, conclusions about the magnetic field, electron density, and particle energies have been obtained.  相似文献   
24.
We analyze complex zebra patterns and fiber bursts during type-IV solar radio bursts on August 1, 2010. It was shown that all of the main details of sporadic zebra patterns can be explained within the model of zebra patterns and fiber bursts during the interaction of plasma waves with whistlers. In addition, it was shown that the major variations in the stripes of the zebra patterns are caused by the scattering mechanism of fast particles on whistlers, which leads to the transition of whistler instability from the normal Doppler effect to an anomalous one.  相似文献   
25.
Basing on radio measurements from different stations the paper presents a compilation of observations and resultinng questions concerning the interpretation of some remarkable features of the solar behind-limb event on 16th February 1984. The event was related to a very strong relativistic particle emission. Attention is paid to the related microwave radiation stimulating a discussion of the discrimination between plasma and gyromagnetic radiation being important for plasma diagnostics. Another outstanding feature is the occurrence of a spectacular multi-band U-shaped type II burst pattern challenging a discussion of possible higher harmonic plasma radiation.  相似文献   
26.
We have conducted experiments on dissolution of quartz, albite,orthoclase, and corundum into H2O-saturated haplogranite meltat 800°C and 200 MPa over a duration of 120–1488 hwith the aim of ascertaining the diffusive transport propertiesof granitic melts at crustal anatectic temperatures. Cylindersof anhydrous starting glass and a single mineral phase (quartzor feldspar) were juxtaposed along flat and polished surfacesinside gold or platinum capsules with 10 wt % added H2O. Concentrationprofiles in glass (quenched melt) perpendicular to the mineral–glassinterfaces and comparison with relevant phase diagrams suggestthat melts at the interface are saturated in the dissolvingphases after 384 h, and with longer durations the concentrationprofiles are controlled only by diffusion of components in themelt. The evolution of the concentration profiles with timeindicates that uncoupled diffusion in the melt takes place alongthe following four linearly independent directions in oxidecomposition space: SiO2, Na2O, and K2O axes (Si-, Na-, and K-eigenvectors,respectively), and a direction between the Al2O3, Na2O, andK2O axes (Al-eigenvector), such that the Al/Na molar ratio isequal to that of the bulk melt and the Al/(Na + K) molar ratiois equal to the equilibrium ASI (= mol. Al2O3/[Na2O + K2O])of the melt. Experiments in which a glass cylinder was sandwichedbetween two mineral cylinders—quartz and albite, quartzand K-feldspar, or albite and corundum—tested the validityof the inferred directions of uncoupled diffusion and exploredlong-range chemical communication in the melt via chemical potentialgradients. The application of available solutions to the diffusionequations for the experimental quartz and feldspar dissolutiondata provides diffusivities along the directions of the Si-eigenvectorand Al-eigenvector of (2·0–2·8) x 10–15m2/s and (0·6–2·4) x 10–14 m2/s, respectively.Minimum diffusivities of alkalis [(3–9) x 10–11m2/s] are orders of magnitude greater than the tetrahedral componentsof the melt. The information provided here determines the rateat which crustal anatexis can occur when sufficient heat issupplied and diffusion is the only mass transport (mixing) processin the melt. The calculated diffusivities imply that a quartzo-feldspathicsource rock with initial grain size of 2–3 mm undergoinghydrostatic, H2O-saturated melting at 800°C (infinite heatsupply) could produce 20–30 vol. % of homogeneous meltin less than 1–10 years. Slower diffusion in H2O-undersaturatedmelts will increase this time frame. KEY WORDS: chemical diffusion; haplogranite; mineral dissolution experiments; crustal anatexis  相似文献   
27.
Abstract Natural, pure CO2 inclusions in quartz and olivine (c. Fo90) were exposed to controlled fH2 conditions at T= 718–728°C and Ptotal= 2 kbar; their compositions were monitored (before and after exposures) by microsampling Raman spectroscopy (MRS) and microthermometry. In both minerals exposed at the graphite–methane buffer (fH2= 73 bar), fluid speciations record the diffusion of hydrogen into the inclusions. In quartz, room-temperature products in euhedral isolated (EI type) inclusions are carbonic phases with molar compositions of c. CO2(60) + CH4(40) plus graphite (Gr) and H2O, whereas anhedral inclusions along secondary fractures (AS type) are Gr-free and contain H2O plus carbonic phases with compositions in the range c. CO2(60) + CH4(40) to CO2(10) + CH4(90). EI type inclusions in olivine evolved to c. CO2(90–95) + CH4(5–10) without Gr, whereas AS type inclusions have a range of compositions from CO2(90) + CH4(10) ± Gr to CH4(50) + H2(50) ± Gr; neither H2O nor any hydrous species was detected by optical microscopy or MRS in the olivine-hosted products. Differences in composition between and among the texturally distinct populations of inclusions in both minerals probably arise from variations in initial fluid densities, as all inclusions apparently equilibrated with the ambient fH2. These relations suggest that compositional variability among inclusions in a given natural sample does not require the entrapment of multiple generations of fluids. In addition, the absence of H2O in the olivine-hosted inclusions would require the extraction of oxygen from the fluids, in which case re-equilibration mechanisms may be dependent on the composition and structure of the host mineral. Many of the same samples were re-exposed to identical P–T conditions using Ar as the pressure medium, yielding ambient fH2= 0.06 bar. In most inclusions, the carbonic fluids returned to pure CO2 and graphite persisted in the products. Reversal of the mechanisms from the prior exposure at fH2= 73 bar did not occur in any inclusions but the AS types in olivine, in which minor CO2 was produced at the expense of CH4 and/or graphite. The observed non-reversibility of previous mechanisms may be attributed to: (1) slower fluid–solid reactions compared to reactions in the homogeneous fluid phase; (2) depressed activities of graphite due to poor ordering; and/or (3) low ambient fO2 at the conditions of the second run.  相似文献   
28.
Abstract

A new infrared (IR) radiation scheme for extending the CCC/GCM (Canadian Climate Center General Circulation Model) into the middle atmosphere is proposed. It combines the previous CCC/GCM radiation scheme including the effects of H2O, CO2, O3, CH4, N2O, CFC11 and CFC12, clouds and aerosols, with a new computationally efficient matrix parameterization for the cooling rate in the middle atmosphere for both LTE (local thermodynamic equilibrium) and non‐LTE layers. The matrix parameterization includes the effects of both the 15 μm CO2 and the 9.6 μm O3 bands and provides a proper lower boundary condition for the non‐LTE recurrence formula. The new scheme shows satisfactory agreement with line‐by‐line calculations. The absolute error does not exceed 0.8 ? day‐1 for vastly different atmospheric conditions. Introducing the new radiation module into the CCC/GCM results in deviations of the simulated temperature from the CIRA‐1986 model of not more than 10 ? throughout most of the altitude‐latitude domain.  相似文献   
29.
Results of the spectral measurements of ionospheric noise in the meter band are presented. The events lasting several milliseconds (the emission maximum of which drifts upward (in frequency), is reflected (stops), and drifts downward) have been distinguished. Moreover, multiple harmonics are observed. The frequency-time structure of such events have been considered from the viewpoint of registration of the electron beam synchrotron emission harmonics at ionospheric altitudes in the geomagnetic field. The model calculations of the frequency-time structure of ionospheric radio noise bursts drifting in frequency have been performed taking into account the measurement conditions. It has been indicated that the model electron radio noise bursts agree with the measured bursts reflecting from the ionosphere at altitudes of 100–180 km. The model of the monoenergetic beam of electrons precipitating from the radiation belt (L ~ 2.0–2.8) into the ionosphere has been proposed.  相似文献   
30.
The thermal regime of the middle atmosphere is determined to a great extent by the balance between the incoming solar and outgoing infrared radiation. To account for these processes in numerical models of the middle atmosphere, parameterizations that are capable of quickly and accurately calculating infrared cooling and solar heating rates are required. These parameterizations should include the breakdown of local thermodynamic equilibrium (LTE) conditions and allow for feedbacks by ensuring that dependencies on all input parameters are accounted for. This paper discusses the major mechanisms responsible for maintaining the radiative energy budget of the middle atmosphere and presents a brief review of approaches and numerical schemes currently available for use in general circulation models. The main focus of the paper is on the approaches and schemes designed for non-LTE treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号