首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43108篇
  免费   476篇
  国内免费   243篇
测绘学   925篇
大气科学   2124篇
地球物理   9222篇
地质学   16568篇
海洋学   3728篇
天文学   9790篇
综合类   132篇
自然地理   1338篇
  2022年   533篇
  2021年   812篇
  2020年   857篇
  2019年   916篇
  2018年   1952篇
  2017年   1781篇
  2016年   1983篇
  2015年   863篇
  2014年   1688篇
  2013年   2402篇
  2012年   1935篇
  2011年   2154篇
  2010年   2038篇
  2009年   2248篇
  2008年   1969篇
  2007年   2158篇
  2006年   1889篇
  2005年   1027篇
  2004年   942篇
  2003年   939篇
  2002年   849篇
  2001年   855篇
  2000年   727篇
  1999年   482篇
  1998年   523篇
  1997年   551篇
  1996年   393篇
  1995年   431篇
  1994年   425篇
  1993年   330篇
  1992年   342篇
  1991年   332篇
  1990年   393篇
  1989年   319篇
  1988年   299篇
  1987年   304篇
  1986年   234篇
  1985年   349篇
  1984年   343篇
  1983年   353篇
  1982年   332篇
  1981年   294篇
  1980年   317篇
  1979年   253篇
  1978年   286篇
  1977年   249篇
  1976年   211篇
  1975年   230篇
  1974年   204篇
  1973年   251篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
942.
We suggest a model that explains the stratification peculiarities of the [O III] and Hα line emission from some of the ring nebulae around Wolf-Rayet stars. These peculiarities lie in the fact that the [O III] line emission regions are farther from the central star than the Hα regions, with the distance between them reaching several tenths of a parsec. We show that the radiative shock produced by a Wolf-Rayet stellar wind and propagating with a velocity of ~100 km s?1 cannot explain such large distances between these regions due to the low velocity of the gas outflow from the shock front. The suggested model takes into account the fact that the shock produced by a Wolf-Rayet stellar wind propagates in a two-phase medium: a rarefied medium and dense compact clouds. The gas downstream of a fast shock traveling in a rarefied gas compresses the clouds. Slow radiative shocks are generated in the clouds; these shocks heat the latter to temperatures at which ions of doubly ionized oxygen are formed. The clouds cool down, radiating in the lines of this ion, to temperatures at which Balmer line emission begins. The distance between the [O III] and Hα line emission regions is determined by the cooling time of the clouds downstream of the slow shock and by the velocity of the fast shock. Using the ring nebula NGC 6888 as an example, we show that the gas downstream of the fast shock must be at the phase of adiabatic expansion rather than deceleration with radiative cooling, as assumed previously.  相似文献   
943.
The processes of the solar radiation extinction in deep layers of the Venus atmosphere in a wavelength range from 0.44 to 0.66 µm have been considered. The spectra of the solar radiation scattered in the atmosphere of Venus at various altitudes above the planetary surface measured by the Venera-11 entry probe in December 1978 are used as observational data. The problem of the data analysis is solved by selecting an atmospheric model; the discrete-ordinate method is applied in calculations. For the altitude interval from 2–10 km to 36 km, the altitude and spectral dependencies of the volume coefficient of true absorption have been obtained. At altitudes of 3–19 km, the spectral dependence is close to the wavelength dependence of the absorption cross section of S3 molecules, whence it follows that the mixing ratio of this sulfur allotrope increases with altitude from 0.03 to 0.1 ppbv.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 4, 2005, pp. 304–320.Original Russian Text Copyright © 2005 by Maiorov, Ignat’ev, Moroz, Zasova, Moshkin, Khatuntsev, Ekonomov.  相似文献   
944.
We study the transfer process from the scattered disk (SD) to the high-perihelion scattered disk (HPSD) (defined as the population with perihelion distances q > 40 AU and semimajor axes a>50 AU) by means of two different models. One model (Model 1) assumes that SD objects (SDOs) were formed closer to the Sun and driven outwards by resonant coupling with the accreting Neptune during the stage of outward migration (Gomes 2003b, Earth, Moon, Planets 92, 29–42.). The other model (Model 2) considers the observed population of SDOs plus clones that try to compensate for observational discovery bias (Fernández et al. 2004, Icarus , in press). We find that the Kozai mechanism (coupling between the argument of perihelion, eccentricity, and inclination), associated with a mean motion resonance (MMR), is the main responsible for raising both the perihelion distance and the inclination of SDOs. The highest perihelion distance for a body of our samples was found to be q = 69.2 AU. This shows that bodies can be temporarily detached from the planetary region by dynamical interactions with the planets. This phenomenon is temporary since the same coupling of Kozai with a MMR will at some point bring the bodies back to states of lower-q values. However, the dynamical time scale in high-q states may be very long, up to several Gyr. For Model 1, about 10% of the bodies driven away by Neptune get trapped into the HPSD when the resonant coupling Kozai-MMR is disrupted by Neptune’s migration. Therefore, Model 1 also supplies a fossil HPSD, whose bodies remain in non-resonant orbits and thus stable for the age of the solar system, in addition to the HPSD formed by temporary captures of SDOs after the giant planets reached their current orbits. We find that about 12 – 15% of the surviving bodies of our samples are incorporated into the HPSD after about 4 – 5 Gyr, and that a large fraction of the captures occur for up to the 1:8 MMR (a ⋍ 120 AU), although we record captures up to the 1:24 MMR (a ≃ 260 AU). Because of the Kozai mechanism, HPSD objects have on average inclinations about 25°–50°, which are higher than those of the classical Edgeworth–Kuiper (EK) belt or the SD. Our results suggest that Sedna belongs to a dynamically distinct population from the HPSD, possibly being a member of the inner core of the Oort cloud. As regards to 2000 CR105 , it is marginally within the region occupied by HPSD objects in the parametric planes (q,a) and (a,i), so it is not ruled out that it might be a member of the HPSD, though it might as well belong to the inner core.  相似文献   
945.
We analyse different observational data related to the problem of intrinsic magnetic field strength in small-scale fluxtubes outside sunspots. We conclude that the kG range of fluxtube fields follows from not only classical line ratio method, but also from other old and new techniques. For the quiet regions on the Sun, the most probable mode of such fields has a magnetic field strength of 1.2–1.5 kG assuming the rectangular field profile. To best interpret the observations, a weak background field between fluxtubes should be assumed, and its magnetic field strength is expected to increase with the filling factor of fluxtubes. The alternative point of view about subkilogauss fluxtube fields is critically examined, and possible sources of different conclusions are presented.  相似文献   
946.
We study the formation of solar-wind streams in the years of maximum solar activity 2000–2002. We use observations of the scattering of radio emission by solar-wind streams at distances of ~4–60RS from the Sun, data on the magnetic field structure and strength in the source region (R ~ 2.5RS), and observations with the LASCO coronagraph onboard the SOHO spacecraft. Analysis of these data allowed us to investigate the changes in the structure of circumsolar plasma streams during the solar maximum. We constructed radio maps of the solar-wind transition, transonic region in which the heliolatitudinal stream structure is compared with the structure of the white-light corona. We show that the heliolatitudinal structure of the white-light corona largely determines the structure of the solar-wind transition region. We analyze the correlation between the location of the inner boundary of the transition region Rin and the magnetic field strength on the source surface |BR|. We discuss the peculiarities of the Rin = F(|BR|) correlation diagrams that distinguish them from similar diagrams at previous phases of the solar cycle.  相似文献   
947.
A flare of maser radio emission in the 1665-MHz OH line with a flux density of about 1000 Jy was discovered in the star-forming region W75 N in 2003. At the time of its observations, it was the strongest OH maser in the entire history of research since the discovery of cosmic OH masers in 1965. The linear polarization of the flare emission reached 100%. A weaker flare with a flux density of 145 Jy was observed in this source in 2000–2001; this was probably a precursor of the intense flare. The intensity of two other spectral features decreased when the flare emerged. This change in the intensity of the emission from maser condensations (a brightening of some of them and a weakening of others) can be explained by the passage of a magnetohydrodynamic shock through regions of enhanced gas concentration.  相似文献   
948.
We present spectra for 34 accretion-powers X-ray pulsars and one millisecond pulsar that were within the field of view of the INTEGRAL observatory over two years (December 2002–January 2005) of its in-orbit operation and that were detected by its instruments at a statistically significant level (> 8σ in the energy range 18–60 keV). There are seven recently discovered objects of this class among the pulsars studied: 2RXP J130159.6-635806, IGR/AX J16320-4751, IGR J16358-4726, AX J163904-4642, IGR J16465-4507, SAX/IGR J18027-2017, and AX J1841.0-0535. We have also obtained hard X-ray (>20 keV) spectra for the accretion-powered pulsars RX J0146.9+6121, AX J1820.5-1434, and AX J1841.0-0535 for the first time. We analyze the evolution of spectral parameters as a function of the intensity of the sources and compare these with the results of previous studies.  相似文献   
949.
Acceleration of charged particles by neutral gas turbulence in giant molecular clouds is considered. The gamma-ray emission from these clouds is estimated. It is shown that molecular clouds can be the counterparts of some of unidentified sources.  相似文献   
950.
We study non-axisymmetric oscillations of thin prominence fibrils. A fibril is modeled by a straight thin magnetic tube with the ends frozen in dense plasmas. The density inside and outside the tube varies only along the tube and it is discontinuous at the tube boundary. Making a viable assumption that the tube radius is much smaller than its length, we show that the squares of the frequencies of non-axisymmetric tube oscillations are given by the eigenvalues of the Sturm–Liouville problem for a second-order ordinary differential equation on a finite interval with the zero boundary conditions. For an equilibrium density that is constant outside the tube and piecewise constant inside we derived a simple dispersion equation determining the frequencies of non-axisymmetric oscillations. We carry out a parametric study of this equation both analytically and numerically, restricting our analysis to the first even mode and the first odd mode. In particular, we obtained a criterion that allows to find out if each of these modes is a normal or leaky mode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号