Migmatitic rocks near Grenville, Quebec, preserve features indicative of reactions at the onset of granulite facies metamorphism. In this area, metapelites and metacarbonates of the classic Grenville Series are spatially associated with granitic gneiss and metabasite, and flank a Paleozoic, Fe-rich syenite stock. Near this intrusion, the metapelite is diatexitic and nearly devoid of biotite, indicating the involvement of biotite during melting in the contact aureole of this intrusion. Outside of the contact aureole, metapelites and associated rocks contain biotite and are metatexitic. These features suggest two episodes of migmatization, the earlier predating the syenite, the later, synchronous with this intrusion.
Hornblende-rich metabasites near the syenite contain a two-part neosome consisting of coarse-grained leucosome veins and patches that are enclosed by fine-grained, pyroxene-rich envelopes. Migmatization is attributed to dehydration melting in the presence of CO2-rich fluids possibly derived from nearby carbonate rocks prior to and/or during emplacement of the syenite. The occurrence of isolated mafic clots in the mesosome and rarity of melanosome seams on leucosomes suggest that some melts were mobile on an outcrop scale. These observations suggest that the leucosomes formed by the segregation of melts, which, coupled with CO2 flux, dehydrated the wallrock along narrow margins, forming the pyroxene-rich neosomes. Back-reaction with residual fluids led to the local scapolitization of plagioclase and the concomitant formation of coronal garnet on pyroxene in neosomes. Thermobarometry of corona structures within the contact aureole generates diffusional Mg-Fe blocking temperatures ( 550 °C at 5.5 kbar). Extrapolated up-temperature, P-sensitive equilibria for the coronas yield similar pressures (8–9 kbar) as texturally-equilibrated assemblages for which high temperatures ( 750 ± 50 °C; XCO2 = 0.90−0.95) were determined for rocks sampled inside and outside of the contact aureole. This suggests that the Grenville migmatites had not been substantially decompressed by the time that the syenite was emplaced. 相似文献
The Jinping–Song Da rift structure in the Emeishan Large Igneous Province is composed of Permian high- and low-Ti volcanic and volcanoplutonic ultramafic-mafic associations of different compositions and genesis. High-Ti picrites, picrobasalts, basalts, and dolerites are enriched in LREE and depleted in HREE and show low Al2O3/TiO2 ratios (~4), commensurate εNd(T) values (+0.5 to +1.1), and low (Th/Nb)PM ratios similar to those of OIB-enriched mantle source. The established geochemical characteristics evidence that the parental melts of these rocks were generated from garnet lherzolite at the depths of garnet stability (~200 to 400 km). Later, high-Mg low-Ti volcanics (komatiites, komatiitic basalts, and basalts) and associating small peridotite-gabbro massifs and komatiite-basalt dikes were produced as a result of ~20% partial melting of depleted water-poor (≤0.03 wt.% H2O) peridotite substratum from the hottest upper part of mantle plume at relatively shallow depths (100–120 km). The LREE-depleted komatiites and komatiitic basalts are characterized by low (Ce/Yb)CH values, 187Re/188Os = 0.05–1.2, 87Sr/86Sr = 0.704–0.706, positive εNd(T) values (+3 to +8), γOs = –0.5 to +0.9, and strong negative anomalies of Ba, K, and Sr on the spidergrams. The scarcer LREE-enriched komatiites, komatiitic basalts, and basalts vary greatly in chemical composition and values of εNd(t) (+6.4 to –10.2), 87Sr/86Sr (0.706–0.712), and γOs (+14.8 to +56), which is due to the different degrees of crustal contamination of parental magmas. The Rb-Sr isotopic age of basaltic komatiite is 257 ± 24 Ma. The Re-Os age determined by analysis of 12 komatiite samples is 270 ± 21 Ma. These data agree with the age of flood basalts of the Emeishan Large Igneous Province. The komatiite-basalt complex of the Song Da rift is still the only Phanerozoic PGE-Cu-Ni-complex of this composition. The geochemistry of accompanying Cu-Ni-PGE-ores confirms their relationship with komatiite-basaltic magmatism. 相似文献
This study considers the influence of the effects of scattering due to Langmuir turbulent pulsations in the transfer of radiation in the spectral lines. The transfer equation of radiation in spectral lines, by taking into account scattering due to Langmuir turbulent pulsations, is written in a form convenient for application by numerical methods.The profile's intensity for a plane-parallel finite isothermal slab of a turbulent plasma in the case of complete redistribution of scattering by an atom are obtained. Numerical studies show that in this case with the broadening of spectral lines and the decreasing of self-reversal, the Langmuir frequency
pe is of the same order as the electronic Doppler width
De. Creation of the line satellites when
pe is larger than the line width is shown with the aid of numerical methods. 相似文献
We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 February 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons for only a brief, early phase. Throughout the main period of energy release there is a super-hot (T?30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model, whereby Alfvén-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks: heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely expanding or conductively cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 February 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature (T?20 MK) post-flare loops. The number, size, and early appearance of these loops in TRACE’s 171 Å band are consistent with the type of transient reconnection assumed in the model. 相似文献
Both radiocarbon and optically stimulated luminescence (OSL) dating methods were applied to test their suitability for establishing
a chronology of arid-zone lacustrine sediments using a 5.88-m-long core drilled from Lake Ulaan, southern Mongolia. Although
the radiocarbon and OSL ages agree in some samples, the radiocarbon ages are older than the corresponding OSL ages at the
550-cm depth horizon (late Pleistocene) and in the 100–300-cm interval (early to late Holocene). In the early to late Holocene,
radiocarbon ages are consistently older than OSL ages by 4,100–5,800 years, and in the late Pleistocene by 2,700–3,000 years.
Grain-size analysis of early to late Holocene sediments and one late Pleistocene sediment sample (550-cm depth) indicates
that eolian processes were the dominant sediment-transport mechanism. Also, two late Pleistocene sediments samples (from 400-
to 500-cm depths) are interpreted to have been deposited by both eolian and glaciofluvial processes. Accordingly, the radiocarbon
ages that were older than the corresponding OSL ages during the Holocene seem to have been a consequence of the influx of
14C-deficient carbon delivered from adjacent soils and Paleozoic carbonate rocks by the westerly winds, a process that is also
active today. In addition to the input of old reworked carbon by eolian processes, the late Pleistocene sediments were also
influenced by old carbon delivered by deglacial meltwater. The results of this study suggest that when eolian sediment transport
is suspected, especially in lakes of arid environments, the OSL dating method is superior to the radiocarbon dating method,
as it eliminates a common ‘old-carbon’ error problem. 相似文献
Taking the Chaohe River Basin above the Miyun Reservoir in North China as a study area, the characteristics and variation
trends of annual runoff and annual precipitation during 1961–2005 were analyzed applying Mann-Kendall test method on the basis
of the hydrologic data of the major hydrological station (Xiahui Station) located at the outlet of the drainage basin and
the meteorological data of 17 rainfall stations. Human activities including water conservancy projects construction and water
diversion as well as implementation of soil and water conservation from 1961 to 2005 were carefully studied using time series
contrasting method. The referenced period (1961–1980) that influenced slightly by human activities and the compared period
(1981–2005) that influenced significantly by water conservancy and soil conservation measures were identified according to
the runoff variation process analysis and abrupt change points detection during 1961–2005 applying double accumulative curve
method, mean shift t-test method and Mann-Kendall mutation test technique. Based on the establishment of a rainfall-runoff
empirical statistical model, impacts and the runoff-reducing effects of water conservancy and soil conservation measures on
runoff reduction were evaluated quantitatively. The major results could be summarized as follows: (1) The annual precipitation
in the drainage basin tends to decrease while the runoff has declined markedly since the 1960s, the average annual runoff
from 1991 to 2000 was only 90.9% in proportion to that from 1961 to 1970. (2) The annual runoff variations in the drainage
basin are significantly related to human activities. (3) During 1981–1990, 1991–2000, 2001–2005 and 1981–2005, the average
annual runoff reduction amounts were 1.15×108, 0.28×108, 1.10×108 and 0.79×108 m3 respectively and the average annual runoff-reducing effects were 31.99%, 7.13%, 40.71% and 23.79% accordingly. Runoff-reducing
effects by water conservancy and soil conservation measures are more prominent in the low water period. 相似文献
New results on the pressure–temperature–time evolution, deduced from conventional geothermobarometry and in situ U‐Th‐total Pb dating of monazite, are presented for the Bemarivo Belt in northern Madagascar. The belt is subdivided into a northern part consisting of low‐grade metamorphic epicontinental series and a southern part made up of granulite facies metapelites. The prograde metamorphic stage of the latter unit is preserved by kyanite inclusions in garnet, which is in agreement with results of the garnet (core)‐alumosilicate‐quartz‐plagioclase (inclusions in garnet; GASP) equilibrium. The peak metamorphic stage is characterized by ultrahigh temperatures of ~900–950 °C and pressures of ~9 kbar, deduced from GASP equilibria and feldspar thermometry. In proximity to charnockite bodies, garnet‐sillimanite‐bearing metapelites contain aluminous orthopyroxene (max. 8.0 wt% Al2O3) pointing to even higher temperatures of ~970 °C. Peak metamorphism is followed by near‐isothermal decompression to pressures of 5–7 kbar and subsequent near‐isobaric cooling, which is demonstrated by the extensive late‐stage formation of cordierite around garnet. Internal textures and differences in chemistry of metapelitic monazite point to a polyphasic growth history. Monazite with magmatically zoned cores is rarely preserved, and gives an age of c. 737 ± 19 Ma, interpreted as the maximum age of sedimentation. Two metamorphic stages are dated: M1 monazite cores range from 563 ± 28 Ma to 532 ± 23 Ma, representing the collisional event, and M2 monazite rims (521 ± 25 Ma to 513 ± 14 Ma), interpreted as grown during peak metamorphic temperatures. These are among the youngest ages reported for high‐grade metamorphism in Madagascar, and are supposed to reflect the Pan‐African attachment of the Bemarivo Belt to the Gondwana supercontinent during its final amalgamation stage. In the course of this, the southern Bemarivo Belt was buried to a depth of >25 km. Approximately 25–30 Myr later, the rocks underwent heating, interpreted to be due to magmatic underplating, and uplift. Presumably, the northern part of the belt was also affected by this tectonism, but buried to a lower depth, and therefore metamorphosed to lower grades. 相似文献